結果
| 問題 |
No.399 動的な領主
|
| コンテスト | |
| ユーザー |
ngtkana
|
| 提出日時 | 2021-08-05 00:31:26 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 21,475 bytes |
| コンパイル時間 | 25,293 ms |
| コンパイル使用メモリ | 383,336 KB |
| 実行使用メモリ | 26,108 KB |
| 最終ジャッジ日時 | 2024-09-16 15:12:52 |
| 合計ジャッジ時間 | 26,537 ms |
|
ジャッジサーバーID (参考情報) |
judge6 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 3 WA * 16 |
コンパイルメッセージ
warning: unused imports: `Leaf`, `Tuple`, `VecLen`
--> src/main.rs:438:27
|
438 | multi_token::{Leaf, Parser, ParserTuple, RawTuple, Tuple, VecLen},
| ^^^^ ^^^^^ ^^^^^^
|
= note: `#[warn(unused_imports)]` on by default
warning: unused import: `with_str`
--> src/main.rs:676:35
|
676 | pub use self::i::{with_stdin, with_str};
| ^^^^^^^^
warning: unused imports: `ParserTuple`, `Parser`, `RawTuple`, `Token`, `Usize1`
--> src/main.rs:678:28
|
678 | pub use super::i::{Parser, ParserTuple, RawTuple, Token, Usize1};
| ^^^^^^ ^^^^^^^^^^^ ^^^^^^^^ ^^^^^ ^^^^^^
ソースコード
#[allow(unused_imports)]
#[cfg(feature = "dbg")]
use dbg::lg;
use {
make_graph::tuple_make_undirected,
sort_tree::sort_tree,
std::{
iter::repeat_with,
mem::swap,
ptr::{self, null_mut},
},
};
fn main() {
let mut buf = ngtio::with_stdin();
let n = buf.usize();
let g = tuple_make_undirected(
n,
&repeat_with(|| (buf.usize() - 1, buf.usize() - 1))
.take(n - 1)
.collect::<Vec<_>>(),
);
let [_, parent] = sort_tree(0, &g);
let mut lct = LinkCutTree::new(n);
for (i, &p) in parent.iter().enumerate() {
if i != p {
lct.link(i, p);
}
}
for _ in 0..buf.usize() {
let u = buf.usize() - 1;
let v = buf.usize() - 1;
let q = lct.lca(u, v).unwrap();
lct.act_from_root(u, 1);
lct.act_from_root(v, 1);
lct.act_from_root(q, -1);
if let Some(q) = lct.parent(q) {
lct.act_from_root(q, -1);
}
}
let ans = (0..n)
.map(|i| lct.value(i) as i64)
.map(|x| x * (x + 1) / 2)
.sum::<i64>();
println!("{}", ans);
}
pub struct LinkCutTree {
nodes: Vec<*mut Node>,
}
impl LinkCutTree {
pub fn new(len: usize) -> Self {
let nodes = (0..len)
.map(|id| Box::into_raw(Box::new(Node::new(id))))
.collect::<Vec<_>>();
Self { nodes }
}
pub fn is_empty(&self) -> bool {
self.nodes.is_empty()
}
pub fn len(&self) -> usize {
self.nodes.len()
}
pub fn parent(&self, child: usize) -> Option<usize> {
let child = self.__index(child);
unsafe {
expose(child);
let l = (*child).left;
l.as_ref().map(|l| l.id)
}
}
/// 頂点 `u`, `v` が同じ木に属するとき、`true`
///
/// # Panics
///
/// - `u`, `v` のいずれかが `self.len()` 以上のとき
///
pub fn same(&self, u: usize, v: usize) -> bool {
let u = self.__index(u);
let v = self.__index(v);
unsafe {
expose(u);
expose(v);
ptr::eq(u, v) || !(*u).parent.is_null()
}
}
/// ある木の根 `child` を別の木の頂点 `parent` の子にします。
///
/// # Panics
///
/// - `child`, `parent` のいずれかが `self.len()` 以上のとき
/// - `child` と `parent` が同じ木に属するとき
/// - `child` が根でないとき
///
pub fn link(&mut self, child: usize, parent: usize) {
debug_assert!(!self.same(child, parent));
let child = self.__index(child);
let parent = self.__index(parent);
unsafe { (*child).parent = parent }
}
/// 根でない頂点 `child` と、その親を結ぶ辺を消去し、もともと
/// 親だった頂点の ID を返します。
///
/// # Panics
///
/// - `child` が `self.len()` 以上のとき
/// - `child` がある頂点の値であるとき
///
pub fn cut(&mut self, child: usize) -> usize {
debug_assert!(child < self.nodes.len());
let child = self.nodes[child];
unsafe {
expose(child);
let l = (*child).left;
debug_assert!(!l.is_null());
(*l).parent = null_mut();
(*child).left = null_mut();
(*child).update();
(&*l).id
}
}
/// 頂点 `u` と `v` が同じ木に属するとき LCA を返し、そうでないとき
/// `None` を返します。
///
/// # Panics
///
/// - `u`, `v` のいずれかが `self.len()` 以上のとき
///
pub fn lca(&self, u: usize, v: usize) -> Option<usize> {
let u = self.__index(u);
let v = self.__index(v);
unsafe {
expose(u);
expose(v).as_ref().map(|q| q.id)
}
}
pub fn depth(&self, _u: usize) -> usize {
todo!()
}
pub fn act_from_root(&mut self, u: usize, lazy: i32) {
let u = self.__index(u);
unsafe {
expose(u);
(*u).lazy += lazy;
(*u).push();
}
}
pub fn value(&self, u: usize) -> i32 {
let u = self.__index(u);
unsafe {
expose(u);
(&*u).value
}
}
/// 頂点 `new_root` からそれの属する木の根との間のパス上の辺の向きをすべて
/// 逆転して、`new_root` をその木の新しい根にします。
///
/// # Panics
///
/// - `new_root` が `self.len()` 以上のとき
///
pub fn evert(&mut self, new_root: usize) {
let new_root = self.__index(new_root);
unsafe {
expose(new_root);
(*new_root).rev ^= true;
(*new_root).push();
}
}
fn __index(&self, index: usize) -> *mut Node {
if self.nodes.len() <= index {
panic!(
"index {} out of range for link-cut tree of length {}",
index,
self.len(),
);
}
self.nodes[index]
}
}
unsafe fn expose(v: *mut Node) -> *mut Node {
let mut last = null_mut();
let mut now = v;
while !now.is_null() {
(*now).splay();
(*now).right = last;
last = now;
now = (*now).parent;
}
(*v).splay();
last
}
struct Node {
left: *mut Node,
right: *mut Node,
parent: *mut Node,
id: usize,
lazy: i32,
value: i32,
rev: bool,
}
impl Node {
fn new(id: usize) -> Self {
Self {
left: null_mut(),
right: null_mut(),
parent: null_mut(),
id,
value: 0,
lazy: 0,
rev: false,
}
}
unsafe fn rotate(&mut self) {
let p = self.parent;
let pp = (*p).parent;
let c;
if ptr::eq((*p).left, self) {
c = self.right;
self.right = p;
(*p).left = c;
} else {
c = self.left;
self.left = p;
(*p).right = c;
}
if !pp.is_null() && ptr::eq((*pp).left, p) {
(*pp).left = self;
}
if !pp.is_null() && ptr::eq((*pp).right, p) {
(*pp).right = self;
}
self.parent = pp;
(*p).parent = self;
if !c.is_null() {
(*c).parent = p;
}
(*p).update();
self.update();
}
unsafe fn splay(&mut self) {
while self.state() != 0 {
let p = self.parent;
if (*p).state() == 0 {
(*p).push();
self.push();
self.rotate();
} else {
let g = (*p).parent;
(*g).push();
(*p).push();
self.push();
if self.state() == (*p).state() {
(*p).rotate();
self.rotate();
} else {
self.rotate();
self.rotate();
}
}
}
self.push();
}
unsafe fn state(&self) -> i8 {
if self.parent.is_null() {
0
} else if ptr::eq((*self.parent).left, self) {
1
} else if ptr::eq((*self.parent).right, self) {
-1
} else {
0
}
}
unsafe fn update(&mut self) {}
unsafe fn push(&mut self) {
if let Some(l) = self.left.as_mut() {
l.lazy += self.lazy;
}
if let Some(r) = self.right.as_mut() {
r.lazy += self.lazy;
}
self.value += self.lazy;
self.lazy = 0;
if self.rev {
swap(&mut self.left, &mut self.right);
if let Some(l) = self.left.as_mut() {
l.rev &= true;
}
if let Some(r) = self.right.as_mut() {
r.rev &= true;
}
self.rev = true;
}
}
}
// sort_tree {{{
#[allow(dead_code)]
mod sort_tree {
pub fn remove_parent(g: &mut [Vec<usize>], parent: &[usize]) {
g.iter_mut().enumerate().for_each(|(x, gx)| {
if let Some(i) = gx.iter().position(|&y| y == parent[x]) {
gx.swap_remove(i);
};
});
}
pub fn sort_tree_remove_parent(root: usize, g: &mut [Vec<usize>]) -> [Vec<usize>; 2] {
let [ord, parent] = sort_tree(root, g);
remove_parent(g, &parent);
[ord, parent]
}
pub fn sort_tree(root: usize, g: &[Vec<usize>]) -> [Vec<usize>; 2] {
sort_tree_by(root, g, |x| *x)
}
pub fn sort_tree_by<E>(root: usize, g: &[Vec<E>], to: impl Fn(&E) -> usize) -> [Vec<usize>; 2] {
let mut ord = Vec::new();
let mut parent = vec![root; g.len()];
sort_tree_impl(root, root, g, &to, &mut parent, &mut ord);
[ord, parent]
}
fn sort_tree_impl<E>(
x: usize,
p: usize,
g: &[Vec<E>],
to: &impl Fn(&E) -> usize,
parent: &mut [usize],
ord: &mut Vec<usize>,
) {
ord.push(x);
parent[x] = p;
g[x].iter()
.map(to)
.filter(|&y| y != p)
.for_each(|y| sort_tree_impl(y, x, g, to, parent, ord))
}
}
// }}}
// make_graph {{{
#[allow(dead_code)]
mod make_graph {
pub fn tuple_make_undirected(n: usize, edges: &[(usize, usize)]) -> Vec<Vec<usize>> {
make_undirected_by(n, edges, |&(u, v)| [u, v])
}
pub fn array_make_undirected(n: usize, edges: &[[usize; 2]]) -> Vec<Vec<usize>> {
make_undirected_by(n, edges, |&[u, v]| [u, v])
}
pub fn make_undirected_by<E>(
n: usize,
edges: &[E],
f: impl Fn(&E) -> [usize; 2],
) -> Vec<Vec<usize>> {
let mut g = vec![Vec::new(); n];
for [u, v] in edges.iter().map(f) {
g[u].push(v);
g[v].push(u);
}
g
}
pub fn tuple_make_directed(n: usize, edges: &[(usize, usize)]) -> Vec<Vec<usize>> {
make_directed_by(n, edges, |&(u, v)| [u, v])
}
pub fn array_make_directed(n: usize, edges: &[[usize; 2]]) -> Vec<Vec<usize>> {
make_directed_by(n, edges, |&[u, v]| [u, v])
}
pub fn make_directed_by<E>(
n: usize,
edges: &[E],
f: impl Fn(&E) -> [usize; 2],
) -> Vec<Vec<usize>> {
let mut g = vec![Vec::new(); n];
edges.iter().map(f).for_each(|[u, v]| g[u].push(v));
g
}
pub fn tuple_make_undirected_weighted<T: Copy>(
n: usize,
edges: &[(usize, usize, T)],
) -> Vec<Vec<(usize, T)>> {
make_undirected_weighted_by(n, edges, |&(u, v, x)| ([u, v], x))
}
pub fn array_make_undirected_weighted<T: Copy>(
n: usize,
edges: &[([usize; 2], T)],
) -> Vec<Vec<(usize, T)>> {
make_undirected_weighted_by(n, edges, |&([u, v], x)| ([u, v], x))
}
pub fn make_undirected_weighted_by<E, T: Copy>(
n: usize,
edges: &[E],
f: impl Fn(&E) -> ([usize; 2], T),
) -> Vec<Vec<(usize, T)>> {
let mut g = vec![Vec::new(); n];
for ([u, v], x) in edges.iter().map(f) {
g[u].push((v, x));
g[v].push((u, x));
}
g
}
pub fn tuple_make_directed_weighted<T: Copy>(
n: usize,
edges: &[(usize, usize, T)],
) -> Vec<Vec<(usize, T)>> {
make_directed_weighted_by(n, edges, |&(u, v, x)| ([u, v], x))
}
pub fn array_make_directed_weighted<T: Copy>(
n: usize,
edges: &[([usize; 2], T)],
) -> Vec<Vec<(usize, T)>> {
make_directed_weighted_by(n, edges, |&([u, v], x)| ([u, v], x))
}
pub fn make_directed_weighted_by<E, T: Copy>(
n: usize,
edges: &[E],
f: impl Fn(&E) -> ([usize; 2], T),
) -> Vec<Vec<(usize, T)>> {
let mut g = vec![Vec::new(); n];
edges
.iter()
.map(f)
.for_each(|([u, v], w)| g[u].push((v, w)));
g
}
}
// }}}
// template {{{
#[cfg(not(feature = "dbg"))]
#[allow(unused_macros)]
#[macro_export]
macro_rules! lg {
($($expr:expr),*) => {};
}
#[allow(dead_code)]
mod ngtio {
mod i {
pub use self::{
multi_token::{Leaf, Parser, ParserTuple, RawTuple, Tuple, VecLen},
token::{Token, Usize1},
};
use std::{
io::{self, BufRead},
iter,
};
pub fn with_stdin() -> Tokenizer<io::BufReader<io::Stdin>> {
io::BufReader::new(io::stdin()).tokenizer()
}
pub fn with_str(src: &str) -> Tokenizer<&[u8]> {
src.as_bytes().tokenizer()
}
pub struct Tokenizer<S: BufRead> {
queue: Vec<String>, // FIXME: String のみにすると速そうです。
scanner: S,
}
macro_rules! prim_method {
($name:ident: $T:ty) => {
pub fn $name(&mut self) -> $T {
<$T>::leaf().parse(self)
}
};
($name:ident) => {
prim_method!($name: $name);
};
}
macro_rules! prim_methods {
($name:ident: $T:ty; $($rest:tt)*) => {
prim_method!($name:$T);
prim_methods!($($rest)*);
};
($name:ident; $($rest:tt)*) => {
prim_method!($name);
prim_methods!($($rest)*);
};
() => ()
}
impl<S: BufRead> Tokenizer<S> {
pub fn token(&mut self) -> String {
self.load();
self.queue.pop().expect("入力が終了したのですが。")
}
pub fn new(scanner: S) -> Self {
Self {
queue: Vec::new(),
scanner,
}
}
fn load(&mut self) {
while self.queue.is_empty() {
let mut s = String::new();
let length = self.scanner.read_line(&mut s).unwrap(); // 入力が UTF-8 でないときにエラーだそうです。
if length == 0 {
break;
}
self.queue = s.split_whitespace().rev().map(str::to_owned).collect();
}
}
pub fn skip_line(&mut self) {
assert!(
self.queue.is_empty(),
"行の途中で呼ばないでいただきたいです。現在のトークンキュー: {:?}",
&self.queue
);
self.load();
}
pub fn end(&mut self) {
self.load();
assert!(self.queue.is_empty(), "入力はまだあります!");
}
pub fn parse<T: Token>(&mut self) -> T::Output {
T::parse(&self.token())
}
pub fn parse_collect<T: Token, B>(&mut self, n: usize) -> B
where
B: iter::FromIterator<T::Output>,
{
iter::repeat_with(|| self.parse::<T>()).take(n).collect()
}
pub fn tuple<T: RawTuple>(&mut self) -> <T::LeafTuple as Parser>::Output {
T::leaf_tuple().parse(self)
}
pub fn vec<T: Token>(&mut self, len: usize) -> Vec<T::Output> {
T::leaf().vec(len).parse(self)
}
pub fn vec_tuple<T: RawTuple>(
&mut self,
len: usize,
) -> Vec<<T::LeafTuple as Parser>::Output> {
T::leaf_tuple().vec(len).parse(self)
}
pub fn vec2<T: Token>(&mut self, height: usize, width: usize) -> Vec<Vec<T::Output>> {
T::leaf().vec(width).vec(height).parse(self)
}
pub fn vec2_tuple<T>(
&mut self,
height: usize,
width: usize,
) -> Vec<Vec<<T::LeafTuple as Parser>::Output>>
where
T: RawTuple,
{
T::leaf_tuple().vec(width).vec(height).parse(self)
}
prim_methods! {
u8; u16; u32; u64; u128; usize;
i8; i16; i32; i64; i128; isize;
f32; f64;
char; string: String;
}
}
mod token {
use super::multi_token::Leaf;
use std::{any, fmt, marker, str};
pub trait Token: Sized {
type Output;
fn parse(s: &str) -> Self::Output;
fn leaf() -> Leaf<Self> {
Leaf(marker::PhantomData)
}
}
impl<T> Token for T
where
T: str::FromStr,
<Self as str::FromStr>::Err: fmt::Debug,
{
type Output = Self;
fn parse(s: &str) -> Self::Output {
s.parse().unwrap_or_else(|_| {
panic!("Parse error!: ({}: {})", s, any::type_name::<Self>(),)
})
}
}
pub struct Usize1 {}
impl Token for Usize1 {
type Output = usize;
fn parse(s: &str) -> Self::Output {
usize::parse(s)
.checked_sub(1)
.expect("Parse error! (Zero substruction error of Usize1)")
}
}
}
mod multi_token {
use super::{Token, Tokenizer};
use std::{io::BufRead, iter, marker};
pub trait Parser: Sized {
type Output;
fn parse<S: BufRead>(&self, server: &mut Tokenizer<S>) -> Self::Output;
fn vec(self, len: usize) -> VecLen<Self> {
VecLen { len, elem: self }
}
}
pub struct Leaf<T>(pub(super) marker::PhantomData<T>);
impl<T: Token> Parser for Leaf<T> {
type Output = T::Output;
fn parse<S: BufRead>(&self, server: &mut Tokenizer<S>) -> T::Output {
server.parse::<T>()
}
}
pub struct VecLen<T> {
pub len: usize,
pub elem: T,
}
impl<T: Parser> Parser for VecLen<T> {
type Output = Vec<T::Output>;
fn parse<S: BufRead>(&self, server: &mut Tokenizer<S>) -> Self::Output {
iter::repeat_with(|| self.elem.parse(server))
.take(self.len)
.collect()
}
}
pub trait RawTuple {
type LeafTuple: Parser;
fn leaf_tuple() -> Self::LeafTuple;
}
pub trait ParserTuple {
type Tuple: Parser;
fn tuple(self) -> Self::Tuple;
}
pub struct Tuple<T>(pub T);
macro_rules! impl_tuple {
($($t:ident: $T:ident),*) => {
impl<$($T),*> Parser for Tuple<($($T,)*)>
where
$($T: Parser,)*
{
type Output = ($($T::Output,)*);
#[allow(unused_variables)]
fn parse<S: BufRead >(&self, server: &mut Tokenizer<S>) -> Self::Output {
match self {
Tuple(($($t,)*)) => {
($($t.parse(server),)*)
}
}
}
}
impl<$($T: Token),*> RawTuple for ($($T,)*) {
type LeafTuple = Tuple<($(Leaf<$T>,)*)>;
fn leaf_tuple() -> Self::LeafTuple {
Tuple(($($T::leaf(),)*))
}
}
impl<$($T: Parser),*> ParserTuple for ($($T,)*) {
type Tuple = Tuple<($($T,)*)>;
fn tuple(self) -> Self::Tuple {
Tuple(self)
}
}
};
}
impl_tuple!();
impl_tuple!(t1: T1);
impl_tuple!(t1: T1, t2: T2);
impl_tuple!(t1: T1, t2: T2, t3: T3);
impl_tuple!(t1: T1, t2: T2, t3: T3, t4: T4);
impl_tuple!(t1: T1, t2: T2, t3: T3, t4: T4, t5: T5);
impl_tuple!(t1: T1, t2: T2, t3: T3, t4: T4, t5: T5, t6: T6);
impl_tuple!(t1: T1, t2: T2, t3: T3, t4: T4, t5: T5, t6: T6, t7: T7);
impl_tuple!(
t1: T1,
t2: T2,
t3: T3,
t4: T4,
t5: T5,
t6: T6,
t7: T7,
t8: T8
);
}
trait Scanner: BufRead + Sized {
fn tokenizer(self) -> Tokenizer<Self> {
Tokenizer::new(self)
}
}
impl<R: BufRead> Scanner for R {}
}
pub use self::i::{with_stdin, with_str};
mod prelude {
pub use super::i::{Parser, ParserTuple, RawTuple, Token, Usize1};
}
}
// }}}
ngtkana