結果

問題 No.1639 最小通信路
ユーザー kyaneko999kyaneko999
提出日時 2021-08-06 21:40:00
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 96 ms / 2,000 ms
コード長 4,147 bytes
コンパイル時間 206 ms
コンパイル使用メモリ 82,052 KB
実行使用メモリ 78,692 KB
最終ジャッジ日時 2024-09-17 01:30:24
合計ジャッジ時間 4,488 ms
ジャッジサーバーID
(参考情報)
judge2 / judge6
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 43
権限があれば一括ダウンロードができます

ソースコード

diff #

from sys import exit, stdin, setrecursionlimit
from collections import deque, defaultdict, Counter
from copy import deepcopy
from bisect import bisect_left, bisect_right, insort_left, insort_right
from heapq import heapify, heappop, heappush
from itertools import product, permutations, combinations, combinations_with_replacement
from functools import reduce
from math import gcd, sin, cos, tan, asin, acos, atan, atan2, degrees, radians, ceil, floor, sqrt, factorial
from math import pi as PI
from random import randint as rd

setrecursionlimit(500000)
INF = (1<<61)-1
EPS = 1e-10
MOD = 10**9+7
# MOD = 998244353

def input():
    return stdin.readline().strip('\n')
def intput():
    return int(input())
def minput():
    return input().split()
def linput():
    return input().split()
def mint():
    return map(int,input().split())
def lint():
    return list(map(int,input().split()))
def ilint():
    return intput(),lint()
def lcm(x,y):
    return x*y//gcd(x,y)
def lgcd(l):
    return reduce(gcd,l)
def llcm(l):
    return reduce(lcm,l)
def powmod(n,i,mod=MOD):
    return pow(n,mod-1+i,mod) if i<0 else pow(n,i,mod)
def div2(x):
    return x.bit_length()
def div10(x):
    return len(str(x))-(x==0)
def popcount(x):
    return bin(x).count('1')
def digit(x,i,max_len=None):
    s = str(x)
    if max_len:
        i -= max_len-len(s)
    return int(s[i-1]) if i>0 else 0
def digitsum(x):
    ans = 0
    for i in range(div10(x)):
        ans += digit(x,i+1)
    return ans
def pf(x,mode='counter'):
    C = Counter()
    p = 2
    while x>1:
        k = 0
        while x%p==0:
            x //= p
            k += 1
        if k>0:
            C[p] += k
        p = p+2-(p==2) if p*p<x else x
    if mode=='counter':
        return C
    S = set([1])
    for k in C:
        T = set()
        for x in S:
            for i in range(C[k]+1):
                T.add(x*(k**i))
        S = T
    if mode=='set':
        return S
    if mode=='list':
        return sorted(S)
def isprime(x):
    if x<2:
        return False
    return len(pf(x,'set'))==2
def matmul(A, B):
    # import numpy
    A1, A2 = A >> 15, A & (1 << 15) - 1
    B1, B2 = B >> 15, B & (1 << 15) - 1
    X = np.dot(A1, B1) % MOD
    Y = np.dot(A2, B2)
    Z = np.dot(A1 + A2, B1 + B2) - X - Y
    return ((X << 30) + (Z << 15) + Y) % MOD
def matpow(A, N):
    P = np.eye(A.shape[0], dtype=np.int64)
    while N:
        if N & 1:
            P = matmul(P, A)
        A = matmul(A, A)
        N >>= 1
    return P
def zash(S):
    lis = sorted(S)
    dic = {}
    for i,x in enumerate(lis):
        dic[x] = i
    return lis, dic
def pr(*x):
    print(*x, sep='', end='') if len(x) else print()
def lprint(l):
    for x in l: print(x)
def ston(c, c0='a'):
    return ord(c)-ord(c0)
def ntos(x, c0='a'):
    return chr(x+ord(c0))
def judge(x, l=['Yes', 'No']):
    print(l[0] if x else l[1])
def debug(*x, flag=1):
    if flag: print(*x)

######################################################

class UnionFind():
    
    # インデックスは0-start
    # 初期化
    def __init__(self, n):
        self.n = n
        self.parents = [-1]*n
        self.group = n
    
    # private function
    def root(self, x):
        if self.parents[x]<0:
            return x
        else:
            self.parents[x] = self.root(self.parents[x])
            return self.parents[x]
    
    # x,yが属するグループの結合
    def union(self, x, y):
        x = self.root(x)
        y = self.root(y)

        if x==y:
            return
        
        if self.parents[x]>self.parents[y]:
            x,y = y,x

        self.parents[x] += self.parents[y]
        self.parents[y] = x
        self.group -= 1
    
    # x,yが同グループか判定
    def same(self, x, y):
        return self.root(x)==self.root(y)

    # xと同じグループの要素数を取得
    def size(self, x):
        return -self.parents[self.root(x)]
    
    # xが親かを判定
    def isparent(self, x):
        return self.parents[x]<0
    
N=intput()
q=deque([lint() for _ in range(N*(N-1)//2)])
U=UnionFind(N)
while U.group>1:
    a,b,c=q.popleft()
    U.union(a-1,b-1)
print(c)
0