結果

問題 No.1638 Robot Maze
ユーザー maimai
提出日時 2021-08-06 21:41:13
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 8,815 bytes
コンパイル時間 3,506 ms
コンパイル使用メモリ 270,104 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-17 01:32:11
合計ジャッジ時間 5,096 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 1 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 6 ms
5,376 KB
testcase_15 AC 7 ms
5,376 KB
testcase_16 WA -
testcase_17 AC 7 ms
5,376 KB
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 AC 3 ms
5,376 KB
testcase_22 AC 3 ms
5,376 KB
testcase_23 AC 3 ms
5,376 KB
testcase_24 AC 3 ms
5,376 KB
testcase_25 AC 3 ms
5,376 KB
testcase_26 AC 3 ms
5,376 KB
testcase_27 AC 3 ms
5,376 KB
testcase_28 AC 2 ms
5,376 KB
testcase_29 AC 3 ms
5,376 KB
testcase_30 AC 2 ms
5,376 KB
testcase_31 AC 2 ms
5,376 KB
testcase_32 AC 3 ms
5,376 KB
testcase_33 AC 4 ms
5,376 KB
testcase_34 AC 3 ms
5,376 KB
testcase_35 AC 3 ms
5,376 KB
testcase_36 AC 3 ms
5,376 KB
testcase_37 AC 3 ms
5,376 KB
testcase_38 AC 4 ms
5,376 KB
testcase_39 AC 3 ms
5,376 KB
testcase_40 AC 3 ms
5,376 KB
testcase_41 AC 3 ms
5,376 KB
testcase_42 AC 4 ms
5,376 KB
testcase_43 AC 3 ms
5,376 KB
testcase_44 AC 4 ms
5,376 KB
testcase_45 AC 4 ms
5,376 KB
testcase_46 AC 3 ms
5,376 KB
testcase_47 AC 3 ms
5,376 KB
testcase_48 AC 3 ms
5,376 KB
testcase_49 AC 3 ms
5,376 KB
testcase_50 AC 3 ms
5,376 KB
testcase_51 AC 3 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize ("O3")
#include <bits/stdc++.h>

using namespace std;
using ll = long long int;

#define all(v) (v).begin(),(v).end()
#define repeat(cnt,l) for(typename remove_const<typename remove_reference<decltype(l)>::type>::type cnt={};(cnt)<(l);++(cnt))
#define rrepeat(cnt,l) for(auto cnt=(l)-1;0<=(cnt);--(cnt))
#define iterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);++(cnt))
#define diterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);--(cnt))
const long long MD = 1000000007ll; const long double PI = 3.1415926535897932384626433832795L;
template<typename T1, typename T2> inline ostream& operator <<(ostream &o, const pair<T1, T2> p) { o << '(' << p.first << ':' << p.second << ')'; return o; }
template<typename T> inline T& chmax(T& to, const T& val) { return to = max(to, val); }
template<typename T> inline T& chmin(T& to, const T& val) { return to = min(to, val); }
void bye(string s, int code = 0) { cout << s << endl; exit(code); }
mt19937_64 randdev(8901016);
template<typename T, typename Random = decltype(randdev), typename enable_if<is_integral<T>::value>::type* = nullptr>
inline T rand(T l, T h, Random& rand = randdev) { return uniform_int_distribution<T>(l, h)(rand); }
template<typename T, typename Random = decltype(randdev), typename enable_if<is_floating_point<T>::value>::type* = nullptr>
inline T rand(T l, T h, Random& rand = randdev) { return uniform_real_distribution<T>(l, h)(rand); }template<typename T>
static ostream& operator<<(ostream& o, const std::vector<T>& v) {
  o << "[ "; for(const auto& e : v) o<<e<<' ';
  return o << ']';
}

template <typename I>
struct MyRangeFormat{ I b,e; MyRangeFormat(I _b, I _e):b(_b),e(_e){} };
template<typename I>
static ostream& operator<<(ostream& o, const MyRangeFormat<I>& f) {
  o << "[ "; iterate(i,f.b,f.e) o<<*i<<' ';
  return o << ']';
}
template <typename I>
struct MyMatrixFormat{
  const I& p; long long n, m;
  MyMatrixFormat(const I& _p, long long _n, long long _m):p(_p),n(_n),m(_m){}
};
template<typename I>
static ostream& operator<<(ostream& o, const MyMatrixFormat<I>& f) {
  o<<'\n';
  repeat(i,(f.n)) {
    repeat(j,f.m) o<<f.p[i][j]<<' ';
    o<<'\n';
  }
  return o;
}
struct LOG_t { ~LOG_t() { cout << endl; } };
#define LOG (LOG_t(),cout<<'L'<<__LINE__<<": ")
#define FMTA(m,w) (MyRangeFormat<decltype(m+0)>(m,m+w))
#define FMTR(b,e) (MyRangeFormat<decltype(e)>(b,e))
#define FMTV(v) FMTR(v.begin(),v.end())
#define FMTM(m,h,w) (MyMatrixFormat<decltype(m+0)>(m,h,w))

#if defined(_WIN32) || defined(_WIN64)
#define getc_x _getc_nolock
#define putc_x _putc_nolock
#elif defined(__GNUC__)
#define getc_x getc_unlocked
#define putc_x putc_unlocked
#else
#define getc_x getc
#define putc_x putc
#endif
class MaiScanner {
  FILE* fp_;
  constexpr bool isvisiblechar(char c) noexcept { return (0x21<=(c)&&(c)<=0x7E); }
public:
  inline MaiScanner(FILE* fp):fp_(fp){}
  template<typename T> void input_integer(T& var) noexcept {
    var = 0; T sign = 1;
    int cc = getc_x(fp_);
    for (; cc < '0' || '9' < cc; cc = getc_x(fp_))
      if (cc == '-') sign = -1;
    for (; '0' <= cc && cc <= '9'; cc = getc_x(fp_))
      var = (var << 3) + (var << 1) + cc - '0';
    var = var * sign;
  }
  inline int c() noexcept { return getc_x(fp_); }
  template<typename T, typename enable_if<is_integral<T>::value, nullptr_t>::type = nullptr>
  inline MaiScanner& operator>>(T& var) noexcept { input_integer<T>(var); return *this; }
  inline MaiScanner& operator>>(string& var) {
    int cc = getc_x(fp_);
    for (; !isvisiblechar(cc); cc = getc_x(fp_));
    for (; isvisiblechar(cc); cc = getc_x(fp_))
      var.push_back(cc);
    return *this;
  }
  template<typename IT> inline void in(IT begin, IT end) { for (auto it = begin; it != end; ++it) *this >> *it; }
};
class MaiPrinter {
  FILE* fp_;
public:
  inline MaiPrinter(FILE* fp):fp_(fp){}
  template<typename T>
  void output_integer(T var) noexcept {
    if (var == 0) { putc_x('0', fp_); return; }
    if (var < 0)
      putc_x('-', fp_),
      var = -var;
    char stack[32]; int stack_p = 0;
    while (var)
      stack[stack_p++] = '0' + (var % 10),
      var /= 10;
    while (stack_p)
      putc_x(stack[--stack_p], fp_);
  }
  inline MaiPrinter& operator<<(char c) noexcept { putc_x(c, fp_); return *this; }
  template<typename T, typename enable_if<is_integral<T>::value, nullptr_t>::type = nullptr>
  inline MaiPrinter& operator<<(T var) noexcept { output_integer<T>(var); return *this; }
  inline MaiPrinter& operator<<(char* str_p) noexcept { while (*str_p) putc_x(*(str_p++), fp_); return *this; }
  inline MaiPrinter& operator<<(const string& str) {
    const char* p = str.c_str();
    const char* l = p + str.size();
    while (p < l) putc_x(*p++, fp_);
    return *this;
  }
  template<typename IT> void join(IT begin, IT end, char sep = ' ') { for (bool b = 0; begin != end; ++begin, b = 1) b ? *this << sep << *begin : *this << *begin; }
};
MaiScanner scanner(stdin);
MaiPrinter printer(stdout);

struct P {
  using T = int;
  T y, x;

  inline explicit P(T _y, T _x) : y(_y), x(_x) {}
  inline P() : y(0), x(0) {}

  inline bool operator==(P p) const { return y == p.y && x == p.x; }
  inline bool operator<(P p) const { return y == p.y ? x < p.x : y < p.y; }
  inline P operator+(P p) const { return P(y + p.y, x + p.x); }
  inline P operator-(P p) const { return P(y - p.y, x - p.x); }
  inline P& operator+=(P p) {
    y += p.y;
    x += p.x;
    return *this;
  }
  inline P& operator-=(P p) {
    y -= p.y;
    x -= p.x;
    return *this;
  }
  inline P& operator*=(T m) {
    y *= m;
    x *= m;
    return *this;
  }
  inline T distM(P p) const { return abs(y - p.y) + abs(x - p.x); }
  inline T distC(P p) const { return max(abs(y - p.y), abs(x - p.x)); }
  template <typename ITR>
  ITR nearestM(ITR begin, ITR end) const {
    if (begin == end)
      return end;
    T best = distM(*begin);
    ITR besti = begin;
    for (ITR it = begin; ++it, it != end;) {
      T m = distM(*it);
      if (best < m) {
        best = m;
        besti = it;
      }
    }
    return besti;
  }
};
inline ostream& operator<<(ostream& os, P p) {
  os << '(' << p.y << ',' << p.x << ')';
  return os;
}

const P FourMoving[] = {P(-1, 0), P(0, 1), P(1, 0), P(0, -1)};
const P FiveMoving[] = {P(-1, 0), P(0, 1), P(1, 0), P(0, -1), P(0, 0)};
const P EightMoving[] = {P(-1, 0),  P(0, 1),  P(1, 0),  P(0, -1),
                         P(-1, -1), P(-1, 1), P(1, -1), P(1, 1)};

inline P operator*(P::T m, P p) noexcept {
  return P(m * p.y, m * p.x);
}

template <typename T>
// using T = int;
struct F {
  int height, width;
  vector<T> data;

  F(int h = 1, int w = 1) : height(h), width(w), data(h * w) {}

  inline T& operator()(int y, int x) { return data[x + y * width]; }
  inline T& operator()(P p) { return data[p.x + p.y * width]; }
  inline T operator()(int y, int x) const { return data[x + y * width]; }
  inline T operator()(P p) const { return data[p.x + p.y * width]; }

  inline bool safe(int y, int x) const { return 0 <= y && y < height && 0 <= x && x < width; }
  inline bool safe(P p) const { return 0 <= p.y && p.y < height && 0 <= p.x && p.x < width; }

  inline void fill(T e) { std::fill(data.begin(), data.end(), e); }
  inline void resize(int h, int w) {
    height = h;
    width = w;
    data.resize(h * w);
  }

  void print(ostream& os, int setw_arg = 4) {
    for (int y = 0; y < height; ++y) {
      for (int x = 0; x < width; ++x)
        os << setw(setw_arg) << operator()(y, x) << ' ';
      os << '\n';
    }
  }
};

F<ll> gridDistance(int height, int width, P start, function<ll(P, P)> costFunc) {
  priority_queue<pair<ll, P>> pque;

  F<ll> dist(height, width);
  dist.fill(numeric_limits<ll>::max());
  pque.emplace(0, start);
  dist(start) = 0;

  while (!pque.empty()) {
    auto dx = pque.top();
    pque.pop();
    dx.first = -dx.first;

    for (auto y : FourMoving) {
      y += dx.second;
      if (!dist.safe(y))
        continue;
      auto c = costFunc(dx.second, y);
      if (c >= 0 && dist(y) > dx.first + c) {
        dist(y) = dx.first + c;
        pque.emplace(-(dx.first + c), y);
      }
    }
  }

  return dist;
}

//

int H, W;
ll U,D,R,L,K,Pw;
int sy, sx, ty, tx;
string field[101];

//

const ll inf = numeric_limits<ll>::max()/4;

int main() {
  
  scanner >> H>>W>>U>>D>>R>>L>>K>>Pw;
  scanner >> sy >> sx >> ty >> tx;
  scanner.in(field, field+H);
  --sy; --sx; --ty; --tx;
  
  auto dt = gridDistance(H, W, P{sy, sx}, [](P s, P t){
    int c = field[t.y][t.x];
    if (c == '#') return inf;
    int z = 0;
    if (c == '@') z += Pw;
    if (s + P{-1, 0} == t) return U+z;
    if (s + P{1, 0} == t) return D+z;
    if (s + P{0, -1} == t) return L+z;
    if (s + P{0, 1} == t) return R+z;
    return inf;
  });
  
  bool ok = dt(ty, tx) <= K;
  printer << (ok ? "Yes" : "No") << '\n';
  
  return 0;
}
0