結果
| 問題 |
No.1638 Robot Maze
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-08-06 21:45:32 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 4 ms / 2,000 ms |
| コード長 | 8,817 bytes |
| コンパイル時間 | 2,958 ms |
| コンパイル使用メモリ | 222,980 KB |
| 最終ジャッジ日時 | 2025-01-23 14:59:11 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge6 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 49 |
ソースコード
#pragma GCC optimize ("O3")
#include <bits/stdc++.h>
using namespace std;
using ll = long long int;
#define all(v) (v).begin(),(v).end()
#define repeat(cnt,l) for(typename remove_const<typename remove_reference<decltype(l)>::type>::type cnt={};(cnt)<(l);++(cnt))
#define rrepeat(cnt,l) for(auto cnt=(l)-1;0<=(cnt);--(cnt))
#define iterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);++(cnt))
#define diterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);--(cnt))
const long long MD = 1000000007ll; const long double PI = 3.1415926535897932384626433832795L;
template<typename T1, typename T2> inline ostream& operator <<(ostream &o, const pair<T1, T2> p) { o << '(' << p.first << ':' << p.second << ')'; return o; }
template<typename T> inline T& chmax(T& to, const T& val) { return to = max(to, val); }
template<typename T> inline T& chmin(T& to, const T& val) { return to = min(to, val); }
void bye(string s, int code = 0) { cout << s << endl; exit(code); }
mt19937_64 randdev(8901016);
template<typename T, typename Random = decltype(randdev), typename enable_if<is_integral<T>::value>::type* = nullptr>
inline T rand(T l, T h, Random& rand = randdev) { return uniform_int_distribution<T>(l, h)(rand); }
template<typename T, typename Random = decltype(randdev), typename enable_if<is_floating_point<T>::value>::type* = nullptr>
inline T rand(T l, T h, Random& rand = randdev) { return uniform_real_distribution<T>(l, h)(rand); }template<typename T>
static ostream& operator<<(ostream& o, const std::vector<T>& v) {
o << "[ "; for(const auto& e : v) o<<e<<' ';
return o << ']';
}
template <typename I>
struct MyRangeFormat{ I b,e; MyRangeFormat(I _b, I _e):b(_b),e(_e){} };
template<typename I>
static ostream& operator<<(ostream& o, const MyRangeFormat<I>& f) {
o << "[ "; iterate(i,f.b,f.e) o<<*i<<' ';
return o << ']';
}
template <typename I>
struct MyMatrixFormat{
const I& p; long long n, m;
MyMatrixFormat(const I& _p, long long _n, long long _m):p(_p),n(_n),m(_m){}
};
template<typename I>
static ostream& operator<<(ostream& o, const MyMatrixFormat<I>& f) {
o<<'\n';
repeat(i,(f.n)) {
repeat(j,f.m) o<<f.p[i][j]<<' ';
o<<'\n';
}
return o;
}
struct LOG_t { ~LOG_t() { cout << endl; } };
#define LOG (LOG_t(),cout<<'L'<<__LINE__<<": ")
#define FMTA(m,w) (MyRangeFormat<decltype(m+0)>(m,m+w))
#define FMTR(b,e) (MyRangeFormat<decltype(e)>(b,e))
#define FMTV(v) FMTR(v.begin(),v.end())
#define FMTM(m,h,w) (MyMatrixFormat<decltype(m+0)>(m,h,w))
#if defined(_WIN32) || defined(_WIN64)
#define getc_x _getc_nolock
#define putc_x _putc_nolock
#elif defined(__GNUC__)
#define getc_x getc_unlocked
#define putc_x putc_unlocked
#else
#define getc_x getc
#define putc_x putc
#endif
class MaiScanner {
FILE* fp_;
constexpr bool isvisiblechar(char c) noexcept { return (0x21<=(c)&&(c)<=0x7E); }
public:
inline MaiScanner(FILE* fp):fp_(fp){}
template<typename T> void input_integer(T& var) noexcept {
var = 0; T sign = 1;
int cc = getc_x(fp_);
for (; cc < '0' || '9' < cc; cc = getc_x(fp_))
if (cc == '-') sign = -1;
for (; '0' <= cc && cc <= '9'; cc = getc_x(fp_))
var = (var << 3) + (var << 1) + cc - '0';
var = var * sign;
}
inline int c() noexcept { return getc_x(fp_); }
template<typename T, typename enable_if<is_integral<T>::value, nullptr_t>::type = nullptr>
inline MaiScanner& operator>>(T& var) noexcept { input_integer<T>(var); return *this; }
inline MaiScanner& operator>>(string& var) {
int cc = getc_x(fp_);
for (; !isvisiblechar(cc); cc = getc_x(fp_));
for (; isvisiblechar(cc); cc = getc_x(fp_))
var.push_back(cc);
return *this;
}
template<typename IT> inline void in(IT begin, IT end) { for (auto it = begin; it != end; ++it) *this >> *it; }
};
class MaiPrinter {
FILE* fp_;
public:
inline MaiPrinter(FILE* fp):fp_(fp){}
template<typename T>
void output_integer(T var) noexcept {
if (var == 0) { putc_x('0', fp_); return; }
if (var < 0)
putc_x('-', fp_),
var = -var;
char stack[32]; int stack_p = 0;
while (var)
stack[stack_p++] = '0' + (var % 10),
var /= 10;
while (stack_p)
putc_x(stack[--stack_p], fp_);
}
inline MaiPrinter& operator<<(char c) noexcept { putc_x(c, fp_); return *this; }
template<typename T, typename enable_if<is_integral<T>::value, nullptr_t>::type = nullptr>
inline MaiPrinter& operator<<(T var) noexcept { output_integer<T>(var); return *this; }
inline MaiPrinter& operator<<(char* str_p) noexcept { while (*str_p) putc_x(*(str_p++), fp_); return *this; }
inline MaiPrinter& operator<<(const string& str) {
const char* p = str.c_str();
const char* l = p + str.size();
while (p < l) putc_x(*p++, fp_);
return *this;
}
template<typename IT> void join(IT begin, IT end, char sep = ' ') { for (bool b = 0; begin != end; ++begin, b = 1) b ? *this << sep << *begin : *this << *begin; }
};
MaiScanner scanner(stdin);
MaiPrinter printer(stdout);
struct P {
using T = int;
T y, x;
inline explicit P(T _y, T _x) : y(_y), x(_x) {}
inline P() : y(0), x(0) {}
inline bool operator==(P p) const { return y == p.y && x == p.x; }
inline bool operator<(P p) const { return y == p.y ? x < p.x : y < p.y; }
inline P operator+(P p) const { return P(y + p.y, x + p.x); }
inline P operator-(P p) const { return P(y - p.y, x - p.x); }
inline P& operator+=(P p) {
y += p.y;
x += p.x;
return *this;
}
inline P& operator-=(P p) {
y -= p.y;
x -= p.x;
return *this;
}
inline P& operator*=(T m) {
y *= m;
x *= m;
return *this;
}
inline T distM(P p) const { return abs(y - p.y) + abs(x - p.x); }
inline T distC(P p) const { return max(abs(y - p.y), abs(x - p.x)); }
template <typename ITR>
ITR nearestM(ITR begin, ITR end) const {
if (begin == end)
return end;
T best = distM(*begin);
ITR besti = begin;
for (ITR it = begin; ++it, it != end;) {
T m = distM(*it);
if (best < m) {
best = m;
besti = it;
}
}
return besti;
}
};
inline ostream& operator<<(ostream& os, P p) {
os << '(' << p.y << ',' << p.x << ')';
return os;
}
const P FourMoving[] = {P(-1, 0), P(0, 1), P(1, 0), P(0, -1)};
const P FiveMoving[] = {P(-1, 0), P(0, 1), P(1, 0), P(0, -1), P(0, 0)};
const P EightMoving[] = {P(-1, 0), P(0, 1), P(1, 0), P(0, -1),
P(-1, -1), P(-1, 1), P(1, -1), P(1, 1)};
inline P operator*(P::T m, P p) noexcept {
return P(m * p.y, m * p.x);
}
template <typename T>
// using T = int;
struct F {
int height, width;
vector<T> data;
F(int h = 1, int w = 1) : height(h), width(w), data(h * w) {}
inline T& operator()(int y, int x) { return data[x + y * width]; }
inline T& operator()(P p) { return data[p.x + p.y * width]; }
inline T operator()(int y, int x) const { return data[x + y * width]; }
inline T operator()(P p) const { return data[p.x + p.y * width]; }
inline bool safe(int y, int x) const { return 0 <= y && y < height && 0 <= x && x < width; }
inline bool safe(P p) const { return 0 <= p.y && p.y < height && 0 <= p.x && p.x < width; }
inline void fill(T e) { std::fill(data.begin(), data.end(), e); }
inline void resize(int h, int w) {
height = h;
width = w;
data.resize(h * w);
}
void print(ostream& os, int setw_arg = 4) {
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x)
os << setw(setw_arg) << operator()(y, x) << ' ';
os << '\n';
}
}
};
F<ll> gridDistance(int height, int width, P start, function<ll(P, P)> costFunc) {
priority_queue<pair<ll, P>> pque;
F<ll> dist(height, width);
dist.fill(numeric_limits<ll>::max()/4);
pque.emplace(0, start);
dist(start) = 0;
while (!pque.empty()) {
auto dx = pque.top();
pque.pop();
dx.first = -dx.first;
for (auto y : FourMoving) {
y += dx.second;
if (!dist.safe(y))
continue;
auto c = costFunc(dx.second, y);
if (c >= 0 && dist(y) > dx.first + c) {
dist(y) = dx.first + c;
pque.emplace(-(dx.first + c), y);
}
}
}
return dist;
}
//
int H, W;
ll U,D,R,L,K,Pw;
int sy, sx, ty, tx;
string field[101];
//
const ll inf = numeric_limits<ll>::max()/4;
int main() {
scanner >> H>>W>>U>>D>>R>>L>>K>>Pw;
scanner >> sy >> sx >> ty >> tx;
scanner.in(field, field+H);
--sy; --sx; --ty; --tx;
auto dt = gridDistance(H, W, P{sy, sx}, [](P s, P t){
int c = field[t.y][t.x];
if (c == '#') return inf;
int z = 0;
if (c == '@') z += Pw;
if (s + P{-1, 0} == t) return U+z;
if (s + P{1, 0} == t) return D+z;
if (s + P{0, -1} == t) return L+z;
if (s + P{0, 1} == t) return R+z;
return inf;
});
bool ok = dt(ty, tx) <= K;
printer << (ok ? "Yes" : "No") << '\n';
return 0;
}