結果
| 問題 |
No.1638 Robot Maze
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-08-06 21:47:13 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 6 ms / 2,000 ms |
| コード長 | 5,954 bytes |
| コンパイル時間 | 2,110 ms |
| コンパイル使用メモリ | 217,076 KB |
| 最終ジャッジ日時 | 2025-01-23 15:00:24 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 49 |
ソースコード
#include <bits/stdc++.h>
#ifdef DEBUG
#include <Mylib/Debug/debug.cpp>
#else
#define dump(...) ((void)0)
#endif
template <typename T, typename U>
bool chmin(T &a, const U &b) {
return (a > b ? a = b, true : false);
}
template <typename T, typename U>
bool chmax(T &a, const U &b) {
return (a < b ? a = b, true : false);
}
template <typename T, size_t N, typename U>
void fill_array(T (&a)[N], const U &v) {
std::fill((U *) a, (U *) (a + N), v);
}
template <typename T, size_t N, size_t I = N>
auto make_vector(const std::array<int, N> &a, T value = T()) {
static_assert(I >= 1);
static_assert(N >= 1);
if constexpr (I == 1) {
return std::vector<T>(a[N - I], value);
} else {
return std::vector(a[N - I], make_vector<T, N, I - 1>(a, value));
}
}
template <typename T>
std::ostream &operator<<(std::ostream &s, const std::vector<T> &a) {
for (auto it = a.begin(); it != a.end(); ++it) {
if (it != a.begin()) s << " ";
s << *it;
}
return s;
}
template <typename T>
std::istream &operator>>(std::istream &s, std::vector<T> &a) {
for (auto &x : a) s >> x;
return s;
}
std::string YesNo(bool value) { return value ? "Yes" : "No"; }
std::string YESNO(bool value) { return value ? "YES" : "NO"; }
std::string yesno(bool value) { return value ? "yes" : "no"; }
template <typename T>
void putl(const T &value) {
std::cout << value << "\n";
}
template <typename Head, typename... Tail>
void putl(const Head head, const Tail &... tail) {
std::cout << head << " ";
putl(tail...);
}
namespace haar_lib {
template <typename T>
struct edge {
int from, to;
T cost;
int index = -1;
edge() {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {}
};
template <typename T>
struct graph {
using weight_type = T;
using edge_type = edge<T>;
std::vector<std::vector<edge<T>>> data;
auto& operator[](size_t i) { return data[i]; }
const auto& operator[](size_t i) const { return data[i]; }
auto begin() const { return data.begin(); }
auto end() const { return data.end(); }
graph() {}
graph(int N) : data(N) {}
bool empty() const { return data.empty(); }
int size() const { return data.size(); }
void add_edge(int i, int j, T w, int index = -1) {
data[i].emplace_back(i, j, w, index);
}
void add_undirected(int i, int j, T w, int index = -1) {
add_edge(i, j, w, index);
add_edge(j, i, w, index);
}
template <size_t I, bool DIRECTED = true, bool WEIGHTED = true>
void read(int M) {
for (int i = 0; i < M; ++i) {
int u, v;
std::cin >> u >> v;
u -= I;
v -= I;
T w = 1;
if (WEIGHTED) std::cin >> w;
if (DIRECTED)
add_edge(u, v, w, i);
else
add_undirected(u, v, w, i);
}
}
};
template <typename T>
using tree = graph<T>;
} // namespace haar_lib
namespace haar_lib {
template <typename T>
auto dijkstra(const graph<T> &graph, std::vector<int> src) {
using P = std::pair<T, int>;
const int n = graph.size();
std::vector<std::optional<T>> dist(n);
std::vector<bool> check(n, false);
std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
for (auto s : src) {
dist[s] = 0;
pq.emplace(0, s);
}
while (not pq.empty()) {
const auto [d, i] = pq.top();
pq.pop();
if (check[i]) continue;
check[i] = true;
for (auto &e : graph[i]) {
if (not dist[e.to]) {
dist[e.to] = d + e.cost;
pq.emplace(*dist[e.to], e.to);
} else {
if (*dist[e.to] > d + e.cost) {
dist[e.to] = d + e.cost;
if (not check[e.to]) pq.emplace(*dist[e.to], e.to);
}
}
}
}
return dist;
}
} // namespace haar_lib
namespace haar_lib {}
namespace solver {
using namespace haar_lib;
constexpr int m1000000007 = 1000000007;
constexpr int m998244353 = 998244353;
void init() {
std::cin.tie(0);
std::ios::sync_with_stdio(false);
std::cout << std::fixed << std::setprecision(12);
std::cerr << std::fixed << std::setprecision(12);
std::cin.exceptions(std::ios_base::failbit);
}
void solve() {
int H, W; std::cin >> H >> W;
int64_t U, D, R, L, K, P; std::cin >> U >> D >> R >> L >> K >> P;
int xs, ys, xt, yt; std::cin >> xs >> ys >> xt >> yt;
--xs, --ys, --xt, --yt;
std::vector<std::string> C(H); std::cin >> C;
graph<int64_t> g(H * W);
auto index = make_vector<int, 2>({H, W});
{
int k = 0;
for (int i = 0; i < H; ++i) {
for (int j = 0; j < W; ++j) {
index[i][j] = k++;
}
}
}
for (int i = 0; i < H; ++i) {
for (int j = 0; j < W; ++j) {
if (i - 1 >= 0 and C[i - 1][j] != '#') g.add_edge(index[i][j], index[i - 1][j], U + (C[i - 1][j] == '@' ? P : 0));
if (i + 1 < H and C[i + 1][j] != '#') g.add_edge(index[i][j], index[i + 1][j], D + (C[i + 1][j] == '@' ? P : 0));
if (j - 1 >= 0 and C[i][j - 1] != '#') g.add_edge(index[i][j], index[i][j - 1], L + (C[i][j - 1] == '@' ? P : 0));
if (j + 1 < W and C[i][j + 1] != '#') g.add_edge(index[i][j], index[i][j + 1], R + (C[i][j + 1] == '@' ? P : 0));
}
}
auto dist = dijkstra(g, {index[xs][ys]});
// for (int i = 0; i < H; ++i) {
// for (int j = 0; j < W; ++j) {
// dump(dist[index[i][j]]);
// }
// }
auto ans = dist[index[xt][yt]];
dump(ans);
std::cout << (ans and *ans <= K ? "Yes" : "No") << "\n";
}
}
int main() {
solver::init();
while (true) {
try {
solver::solve();
std::cout << std::flush;
std::cerr << std::flush;
} catch (const std::istream::failure &e) {
break;
} catch (...) {
break;
}
}
return 0;
}