結果

問題 No.1640 簡単な色塗り
ユーザー mkawa2mkawa2
提出日時 2021-08-06 22:21:00
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 5,864 bytes
コンパイル時間 171 ms
コンパイル使用メモリ 81,920 KB
実行使用メモリ 269,828 KB
最終ジャッジ日時 2024-06-29 15:26:23
合計ジャッジ時間 35,994 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 67 ms
73,856 KB
testcase_01 AC 62 ms
68,224 KB
testcase_02 AC 63 ms
68,608 KB
testcase_03 AC 61 ms
68,480 KB
testcase_04 AC 620 ms
269,156 KB
testcase_05 AC 635 ms
269,828 KB
testcase_06 AC 62 ms
68,352 KB
testcase_07 AC 62 ms
68,608 KB
testcase_08 AC 64 ms
68,736 KB
testcase_09 AC 63 ms
68,352 KB
testcase_10 AC 1,480 ms
188,088 KB
testcase_11 AC 1,215 ms
166,472 KB
testcase_12 AC 1,081 ms
157,708 KB
testcase_13 TLE -
testcase_14 TLE -
testcase_15 AC 714 ms
135,592 KB
testcase_16 AC 1,000 ms
146,220 KB
testcase_17 AC 1,919 ms
220,452 KB
testcase_18 AC 286 ms
92,128 KB
testcase_19 AC 1,024 ms
156,540 KB
testcase_20 AC 1,422 ms
182,808 KB
testcase_21 AC 1,167 ms
163,864 KB
testcase_22 AC 243 ms
85,652 KB
testcase_23 AC 1,568 ms
198,044 KB
testcase_24 AC 465 ms
110,768 KB
testcase_25 AC 1,136 ms
158,632 KB
testcase_26 AC 1,726 ms
206,320 KB
testcase_27 AC 676 ms
133,000 KB
testcase_28 TLE -
testcase_29 AC 1,714 ms
206,984 KB
testcase_30 AC 609 ms
98,304 KB
testcase_31 TLE -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
testcase_41 -- -
testcase_42 -- -
testcase_43 -- -
testcase_44 -- -
testcase_45 -- -
testcase_46 -- -
testcase_47 -- -
testcase_48 -- -
testcase_49 -- -
testcase_50 -- -
testcase_51 -- -
testcase_52 -- -
testcase_53 -- -
07_evil_01.txt -- -
07_evil_02.txt -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys

# sys.setrecursionlimit(200005)
int1 = lambda x: int(x)-1
p2D = lambda x: print(*x, sep="\n")
def II(): return int(sys.stdin.readline())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LI1(): return list(map(int1, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def LLI1(rows_number): return [LI1() for _ in range(rows_number)]
def SI(): return sys.stdin.readline().rstrip()
dij = [(0, 1), (-1, 0), (0, -1), (1, 0)]
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
inf = 10**16
# md = 998244353
md = 10**9+7

from typing import NamedTuple, Optional, List, cast

class MFGraph:
    class Edge(NamedTuple):
        src: int
        dst: int
        cap: int
        flow: int

    class _Edge:
        def __init__(self, dst: int, cap: int) -> None:
            self.dst = dst
            self.cap = cap
            self.rev: Optional[MFGraph._Edge] = None

    def __init__(self, n: int) -> None:
        self._n = n
        self._g: List[List[MFGraph._Edge]] = [[] for _ in range(n)]
        self._edges: List[MFGraph._Edge] = []

    def add_edge(self, src: int, dst: int, cap: int) -> int:
        assert 0 <= src < self._n
        assert 0 <= dst < self._n
        assert 0 <= cap
        m = len(self._edges)
        e = MFGraph._Edge(dst, cap)
        re = MFGraph._Edge(src, 0)
        e.rev = re
        re.rev = e
        self._g[src].append(e)
        self._g[dst].append(re)
        self._edges.append(e)
        return m

    def add_undir_edge(self, src: int, dst: int, cap: int) -> int:
        assert 0 <= src < self._n
        assert 0 <= dst < self._n
        assert 0 <= cap
        m = len(self._edges)
        e = MFGraph._Edge(dst, cap)
        re = MFGraph._Edge(src, cap)
        e.rev = re
        re.rev = e
        self._g[src].append(e)
        self._g[dst].append(re)
        self._edges.append(e)
        return m

    def get_edge(self, i: int) -> Edge:
        assert 0 <= i < len(self._edges)
        e = self._edges[i]
        re = cast(MFGraph._Edge, e.rev)
        return MFGraph.Edge(
            re.dst,
            e.dst,
            e.cap+re.cap,
            re.cap
        )

    def edges(self) -> List[Edge]:
        return [self.get_edge(i) for i in range(len(self._edges))]

    def change_edge(self, i: int, new_cap: int, new_flow: int) -> None:
        assert 0 <= i < len(self._edges)
        assert 0 <= new_flow <= new_cap
        e = self._edges[i]
        e.cap = new_cap-new_flow
        assert e.rev is not None
        e.rev.cap = new_flow

    def flow(self, s: int, t: int, flow_limit: Optional[int] = None) -> int:
        assert 0 <= s < self._n
        assert 0 <= t < self._n
        assert s != t
        if flow_limit is None:
            flow_limit = cast(int, sum(e.cap for e in self._g[s]))

        current_edge = [0]*self._n
        level = [0]*self._n

        def fill(arr: List[int], value: int) -> None:
            for i in range(len(arr)):
                arr[i] = value

        def bfs() -> bool:
            fill(level, self._n)
            queue = []
            q_front = 0
            queue.append(s)
            level[s] = 0
            while q_front < len(queue):
                v = queue[q_front]
                q_front += 1
                next_level = level[v]+1
                for e in self._g[v]:
                    if e.cap == 0 or level[e.dst] <= next_level:
                        continue
                    level[e.dst] = next_level
                    if e.dst == t:
                        return True
                    queue.append(e.dst)
            return False

        def dfs(lim: int) -> int:
            stack = []
            edge_stack: List[MFGraph._Edge] = []
            stack.append(t)
            while stack:
                v = stack[-1]
                if v == s:
                    flow = min(lim, min(e.cap for e in edge_stack))
                    for e in edge_stack:
                        e.cap -= flow
                        assert e.rev is not None
                        e.rev.cap += flow
                    return flow
                next_level = level[v]-1
                while current_edge[v] < len(self._g[v]):
                    e = self._g[v][current_edge[v]]
                    re = cast(MFGraph._Edge, e.rev)
                    if level[e.dst] != next_level or re.cap == 0:
                        current_edge[v] += 1
                        continue
                    stack.append(e.dst)
                    edge_stack.append(re)
                    break
                else:
                    stack.pop()
                    if edge_stack:
                        edge_stack.pop()
                    level[v] = self._n
            return 0

        flow = 0
        while flow < flow_limit:
            if not bfs():
                break
            fill(current_edge, 0)
            while flow < flow_limit:
                f = dfs(flow_limit-flow)
                flow += f
                if f == 0:
                    break
        return flow

    def min_cut(self, s: int) -> List[bool]:
        visited = [False]*self._n
        stack = [s]
        visited[s] = True
        while stack:
            v = stack.pop()
            for e in self._g[v]:
                if e.cap > 0 and not visited[e.dst]:
                    visited[e.dst] = True
                    stack.append(e.dst)
        return visited

n = II()
mf = MFGraph(2*n+2)
for i in range(n):
    a, b = LI1()
    mf.add_edge(2*n, i, 1)
    mf.add_edge(i, a+n, 1)
    mf.add_edge(i, b+n, 1)
    mf.add_edge(i+n, 2*n+1, 1)

mx = mf.flow(2*n, 2*n+1)
ans = [0]*n
if mx == n:
    print("Yes")
    for e in mf.edges():
        if e.src < n and e.flow:
            ans[e.src] = e.dst-n+1
    print(*ans, sep="\n")
else:
    print("No")
0