結果
| 問題 |
No.1641 Tree Xor Query
|
| コンテスト | |
| ユーザー |
Moss_Local
|
| 提出日時 | 2021-08-06 22:30:51 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 15,313 bytes |
| コンパイル時間 | 25,736 ms |
| コンパイル使用メモリ | 386,492 KB |
| 実行使用メモリ | 35,684 KB |
| 最終ジャッジ日時 | 2024-09-17 02:34:47 |
| 合計ジャッジ時間 | 18,120 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | WA * 18 |
コンパイルメッセージ
warning: unnecessary parentheses around type
--> src/main.rs:119:15
|
119 | fn readi() -> (i64) {
| ^ ^
|
= note: `#[warn(unused_parens)]` on by default
help: remove these parentheses
|
119 - fn readi() -> (i64) {
119 + fn readi() -> i64 {
|
warning: unused variable: `x`
--> src/main.rs:330:17
|
330 | let mut x = 0 as usize;
| ^ help: if this is intentional, prefix it with an underscore: `_x`
|
= note: `#[warn(unused_variables)]` on by default
warning: variable does not need to be mutable
--> src/main.rs:330:13
|
330 | let mut x = 0 as usize;
| ----^
| |
| help: remove this `mut`
|
= note: `#[warn(unused_mut)]` on by default
warning: variable does not need to be mutable
--> src/main.rs:333:17
|
333 | let mut e = Edge {
| ----^
| |
| help: remove this `mut`
warning: unused variable: `i`
--> src/main.rs:550:9
|
550 | for i in 0..n - 1 {
| ^ help: if this is intentional, prefix it with an underscore: `_i`
warning: unused variable: `data`
--> src/main.rs:558:13
|
558 | let mut data = vec![vec![0 as usize; (2) as usize]; (n) as usize];
| ^^^^ help: if this is intentional, prefix it with an underscore: `_data`
warning: unused variable: `i`
--> src/main.rs:568:9
|
568 | for i in 0..q {
| ^ help: if this is intentional, prefix it with an underscore: `_i`
warning: variable does not need to be mutable
--> src/main.rs:544:9
|
544 | let mut vec: Vec<usize> = read_vec();
| ----^^^
| |
| help: remove this `mut`
warning: variable does not need to be mutable
--> src/main.rs:558:9
|
558 | let mut data = vec![vec![0 as usize; (2) as usize]; (n) as usize];
| ----^^^^
| |
| help: re
ソースコード
// -*- coding:utf-8-unix -*-
// #![feature(map_first_last)]
#![allow(dead_code)]
#![allow(unused_imports)]
#![allow(unused_macros)]
use std::collections::*;
use std::convert::*;
use std::convert::{From, Into};
use std::fmt::Debug;
use std::fs::File;
use std::io::prelude::*;
use std::io::*;
use std::marker::Copy;
use std::mem::*;
use std::ops::Bound::*;
use std::ops::{Add, Mul, Neg, Sub};
use std::str;
use std::vec;
use std::{cmp, process::Output};
use std::{cmp::Ordering, env::consts::DLL_PREFIX};
use std::{cmp::Ordering::*, f32::consts::PI};
const INF: i64 = 1223372036854775807;
const UINF: usize = INF as usize;
const FINF: f64 = 122337203685.0;
const INF128: i128 = 1223372036854775807000000000000;
const LINF: i64 = 2147483647;
const MOD: i64 = 1000000007;
// const MOD: i64 = 998244353;
const T: bool = true;
const F: bool = false;
const MPI: f64 = 3.14159265358979323846264338327950288f64;
// const MOD: i64 = INF;
const UMOD: usize = MOD as usize;
use std::cmp::*;
use std::collections::*;
use std::io::stdin;
use std::io::stdout;
use std::io::Write;
use crate::kraskal::kraskal;
macro_rules! p {
($x:expr) => {
println!("{}", $x);
};
}
macro_rules! d {
($x:expr) => {
println!("{:?}", $x);
};
}
macro_rules! dd {
(x:expr) => {
dbg!(x);
};
}
macro_rules! chmin {
($base:expr, $($cmps:expr),+ $(,)*) => {{
let cmp_min = min!($($cmps),+);
if $base > cmp_min {
$base = cmp_min;
true
} else {
false
}
}};
}
macro_rules! chmax {
($base:expr, $($cmps:expr),+ $(,)*) => {{
let cmp_max = max!($($cmps),+);
if $base < cmp_max {
$base = cmp_max;
true
} else {
false
}
}};
}
macro_rules! min {
($a:expr $(,)*) => {{
$a
}};
($a:expr, $b:expr $(,)*) => {{
std::cmp::min($a, $b)
}};
($a:expr, $($rest:expr),+ $(,)*) => {{
std::cmp::min($a, min!($($rest),+))
}};
}
macro_rules! max {
($a:expr $(,)*) => {{
$a
}};
($a:expr, $b:expr $(,)*) => {{
std::cmp::max($a, $b)
}};
($a:expr, $($rest:expr),+ $(,)*) => {{
std::cmp::max($a, max!($($rest),+))
}};
}
// use str::Chars;
// use str::Chars;
#[allow(dead_code)]
fn read<T: std::str::FromStr>() -> T {
let mut s = String::new();
std::io::stdin().read_line(&mut s).ok();
s.trim().parse().ok().unwrap()
}
#[allow(dead_code)]
fn readi() -> (i64) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
iter.next().unwrap().parse::<i64>().unwrap()
}
#[allow(dead_code)]
fn read_vec<T: std::str::FromStr>() -> Vec<T> {
read::<String>()
.split_whitespace()
.map(|e| e.parse().ok().unwrap())
.collect()
}
#[allow(dead_code)]
fn read_vec2<T: std::str::FromStr>(n: u32) -> Vec<Vec<T>> {
(0..n).map(|_| read_vec()).collect()
}
#[allow(dead_code)]
fn readii() -> (i64, i64) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<i64>().unwrap(),
iter.next().unwrap().parse::<i64>().unwrap(),
)
}
fn readff() -> (f64, f64) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<f64>().unwrap(),
iter.next().unwrap().parse::<f64>().unwrap(),
)
}
#[allow(dead_code)]
fn readiii() -> (i64, i64, i64) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<i64>().unwrap(),
iter.next().unwrap().parse::<i64>().unwrap(),
iter.next().unwrap().parse::<i64>().unwrap(),
)
}
#[allow(dead_code)]
fn readuu() -> (usize, usize) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
)
}
fn readcc() -> (char, char) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<char>().unwrap(),
iter.next().unwrap().parse::<char>().unwrap(),
)
}
#[allow(dead_code)]
fn readuuu() -> (usize, usize, usize) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
)
}
#[allow(dead_code)]
fn readuuuu() -> (usize, usize, usize, usize) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
)
}
fn readiiii() -> (i64, i64, i64, i64) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<i64>().unwrap(),
iter.next().unwrap().parse::<i64>().unwrap(),
iter.next().unwrap().parse::<i64>().unwrap(),
iter.next().unwrap().parse::<i64>().unwrap(),
)
}
#[derive(PartialEq, PartialOrd, Clone, Copy)]
pub struct F64Total(f64);
impl Eq for F64Total {}
impl Ord for F64Total {
fn cmp(&self, other: &F64Total) -> Ordering {
let F64Total(f1) = *self;
let F64Total(f2) = *other;
if f1.is_nan() {
Less
} else if f2.is_nan() {
Greater
} else {
if (f1 - f2).is_sign_positive() {
Greater
} else {
Less
}
}
}
}
pub struct Dsu {
n: usize,
// root node: -1 * component size
// otherwise: parent
parent_or_size: Vec<i32>,
}
impl Dsu {
// 0 <= size <= 10^8 is constrained.
pub fn new(size: usize) -> Self {
Self {
n: size,
parent_or_size: vec![-1; size],
}
}
pub fn merge(&mut self, a: usize, b: usize) -> usize {
assert!(a < self.n);
assert!(b < self.n);
let (mut x, mut y) = (self.leader(a), self.leader(b));
if x == y {
return x;
}
if -self.parent_or_size[x] < -self.parent_or_size[y] {
std::mem::swap(&mut x, &mut y);
}
self.parent_or_size[x] += self.parent_or_size[y];
self.parent_or_size[y] = x as i32;
x
}
pub fn same(&mut self, a: usize, b: usize) -> bool {
assert!(a < self.n);
assert!(b < self.n);
self.leader(a) == self.leader(b)
}
pub fn leader(&mut self, a: usize) -> usize {
assert!(a < self.n);
if self.parent_or_size[a] < 0 {
return a;
}
self.parent_or_size[a] = self.leader(self.parent_or_size[a] as usize) as i32;
self.parent_or_size[a] as usize
}
pub fn size(&mut self, a: usize) -> usize {
assert!(a < self.n);
let x = self.leader(a);
-self.parent_or_size[x] as usize
}
pub fn groups(&mut self) -> Vec<Vec<usize>> {
let mut leader_buf = vec![0; self.n];
let mut group_size = vec![0; self.n];
for i in 0..self.n {
leader_buf[i] = self.leader(i);
group_size[leader_buf[i]] += 1;
}
let mut result = vec![Vec::new(); self.n];
for i in 0..self.n {
result[i].reserve(group_size[i]);
}
for i in 0..self.n {
result[leader_buf[i]].push(i);
}
result
.into_iter()
.filter(|x| !x.is_empty())
.collect::<Vec<Vec<usize>>>()
}
}
mod kraskal {
use crate::Dsu;
use crate::F64Total;
pub struct Edge {
pub u: usize,
pub v: usize,
pub cost: u128,
}
#[doc = "es: undirected edges. O(ElogV)"]
pub fn kraskal(n: usize, ess: Vec<(usize, usize, u128)>) -> (Vec<Edge>, Vec<Edge>) {
let mut used = vec![];
let mut unused = vec![];
let mut x = 0 as usize;
let mut es = vec![];
for i in 0..ess.len() {
let mut e = Edge {
u: ess[i].0,
v: ess[i].1,
cost: ess[i].2,
};
es.push(e);
}
es.sort_by_key(|x| x.cost);
let mut uf = Dsu::new(n);
for e in es {
if !uf.same(e.u, e.v) {
uf.merge(e.u, e.v);
used.push(e);
} else {
unused.push(e);
}
}
(used, unused)
}
pub fn kraskal_es(n: usize, es: Vec<Edge>) -> (Vec<Edge>, Vec<Edge>) {
let mut used = vec![];
let mut unused = vec![];
let mut es = es;
es.sort_by_key(|x| x.cost);
let mut uf = Dsu::new(n);
for e in es {
if !uf.same(e.u, e.v) {
uf.merge(e.u, e.v);
used.push(e);
} else {
unused.push(e);
}
}
(used, unused)
}
}
trait SEGLazyImpl {
type Monoid: Copy;
type OperatorMonoid: Copy + PartialEq;
fn m0() -> Self::Monoid;
fn om0() -> Self::OperatorMonoid;
fn f(x: Self::Monoid, y: Self::Monoid) -> Self::Monoid;
fn g(x: Self::Monoid, y: Self::OperatorMonoid, weight: usize) -> Self::Monoid;
fn h(x: Self::OperatorMonoid, y: Self::OperatorMonoid) -> Self::OperatorMonoid;
}
struct SEGLazy<T: SEGLazyImpl> {
n: usize,
data: Vec<T::Monoid>,
lazy: Vec<T::OperatorMonoid>,
weight: Vec<usize>,
}
impl<T: SEGLazyImpl> SEGLazy<T> {
pub fn new(n: usize, init: T::Monoid) -> SEGLazy<T> {
let weights = vec![1; n];
Self::with_weight(n, init, weights)
}
pub fn with_weight(n: usize, init: T::Monoid, weights: Vec<usize>) -> Self {
let mut m = 1;
while m < n {
m *= 2;
}
SEGLazy {
n: m,
data: vec![init; m * 2],
lazy: vec![T::om0(); m * 2],
weight: Self::mk_weight(&weights),
}
}
fn mk_weight(xs: &[usize]) -> Vec<usize> {
let n = xs.len();
let mut m = 1;
while m < n {
m *= 2;
}
let mut res = vec![0; 2 * m];
for i in 0..n {
res[m + i] = xs[i];
}
for k in (1..m).rev() {
let l = 2 * k;
let r = 2 * k + 1;
res[k] = res[l] + res[r];
}
res
}
fn propagate(&mut self, k: usize) {
let weight = self.weight[k];
if self.lazy[k] != T::om0() {
if k < self.n {
self.lazy[2 * k + 0] = T::h(self.lazy[2 * k + 0], self.lazy[k]);
self.lazy[2 * k + 1] = T::h(self.lazy[2 * k + 1], self.lazy[k]);
}
self.data[k] = T::g(self.data[k], self.lazy[k], weight);
self.lazy[k] = T::om0();
}
}
fn do_update(
&mut self,
a: usize,
b: usize,
x: T::OperatorMonoid,
k: usize,
l: usize,
r: usize,
) -> T::Monoid {
self.propagate(k);
if r <= a || b <= l {
self.data[k]
} else if a <= l && r <= b {
self.lazy[k] = T::h(self.lazy[k], x);
self.propagate(k);
self.data[k]
} else {
self.data[k] = T::f(
self.do_update(a, b, x, 2 * k + 0, l, (l + r) >> 1),
self.do_update(a, b, x, 2 * k + 1, (l + r) >> 1, r),
);
self.data[k]
}
}
#[doc = "[l,r)"]
pub fn update(&mut self, l: usize, r: usize, x: T::OperatorMonoid) -> T::Monoid {
let n = self.n;
self.do_update(l, r, x, 1, 0, n)
}
fn do_query(&mut self, a: usize, b: usize, k: usize, l: usize, r: usize) -> T::Monoid {
self.propagate(k);
if r <= a || b <= l {
T::m0()
} else if a <= l && r <= b {
self.data[k]
} else {
T::f(
self.do_query(a, b, 2 * k + 0, l, (l + r) >> 1),
self.do_query(a, b, 2 * k + 1, (l + r) >> 1, r),
)
}
}
#[doc = "[l,r)"]
pub fn query(&mut self, l: usize, r: usize) -> T::Monoid {
let n = self.n;
self.do_query(l, r, 1, 0, n)
}
}
struct RUQ;
impl SEGLazyImpl for RUQ {
type Monoid = usize;
type OperatorMonoid = usize;
fn m0() -> Self::Monoid {
0
}
fn om0() -> Self::OperatorMonoid {
0
}
fn f(x: Self::Monoid, y: Self::Monoid) -> Self::Monoid {
std::cmp::max(x, y)
}
fn g(x: Self::Monoid, y: Self::OperatorMonoid, _: usize) -> Self::Monoid {
x ^ y
}
fn h(x: Self::OperatorMonoid, y: Self::OperatorMonoid) -> Self::OperatorMonoid {
x ^ y
}
}
// #[test]
// fn test_MAX_RUQ() {
// let mut seg: SEGLazy<MAX_RUQ> = SEGLazy::new(10, MAX_RUQ::m0());
// assert_eq!(seg.query(0, 3), 0);
// seg.update(0, 2, 10); // [10,10,0,...]
// assert_eq!(seg.query(0, 3), 10);
// assert_eq!(seg.query(2, 3), 0);
// seg.update(1, 5, 20);
// assert_eq!(seg.query(0, 3), 20);
// assert_eq!(seg.query(0, 1), 10);
// seg.update(0, 1, 5);
// assert_eq!(seg.query(0, 1), 5);
// }
fn dfs(
v: usize,
graph: &Vec<Vec<(usize, usize)>>,
used: &mut Vec<usize>,
d1: &mut Vec<usize>,
d2: &mut Vec<usize>,
) {
used[v] = 1;
d1.push(v);
for i in graph[v].iter() {
let nv = (*i).0;
if used[nv] == 1 {
continue;
}
dfs(nv, &graph, used, d1, d2);
}
d2.push(v);
return;
}
fn solve() {
let (n, q) = readuu();
let mut vec: Vec<usize> = read_vec();
let mut seg: SEGLazy<RUQ> = SEGLazy::new(n, 0);
for i in 0..n {
seg.update(i, i + 1, vec[i]);
}
let mut graph = vec![vec![(0 as usize, 0 as usize); (0) as usize]; (n) as usize];
for i in 0..n - 1 {
let (mut a, mut b) = readuu();
a -= 1;
b -= 1;
graph[a].push((b, 1));
graph[b].push((a, 1));
}
let mut used = vec![0; n];
let mut data = vec![vec![0 as usize; (2) as usize]; (n) as usize];
let mut d1 = vec![];
let mut d2 = vec![];
dfs(0, &graph, &mut used, &mut d1, &mut d2);
let mut dd1 = vec![0; n];
let mut dd2 = vec![0; n];
for i in 0..n {
dd1[d1[i]] = i;
dd2[d2[i]] = i;
}
for i in 0..q {
let (t, x, y) = readuuu();
let x = x - 1;
let l = dd1[x];
let mut r = dd2[x] + 1;
if l == r {
r += 1;
}
if t == 1 {
seg.update(l, r, y);
} else {
p!(seg.query(l, r));
}
}
return;
}
fn main() {
solve();
}
Moss_Local