結果

問題 No.1641 Tree Xor Query
ユーザー Moss_LocalMoss_Local
提出日時 2021-08-06 22:30:51
言語 Rust
(1.77.0)
結果
WA  
実行時間 -
コード長 15,313 bytes
コンパイル時間 5,031 ms
コンパイル使用メモリ 180,120 KB
実行使用メモリ 35,808 KB
最終ジャッジ日時 2023-10-17 03:53:50
合計ジャッジ時間 5,855 ms
ジャッジサーバーID
(参考情報)
judge11 / judge12
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
4,348 KB
testcase_01 AC 1 ms
4,348 KB
testcase_02 AC 1 ms
4,348 KB
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unnecessary parentheses around type
   --> Main.rs:119:15
    |
119 | fn readi() -> (i64) {
    |               ^   ^
    |
    = note: `#[warn(unused_parens)]` on by default
help: remove these parentheses
    |
119 - fn readi() -> (i64) {
119 + fn readi() -> i64 {
    |

warning: unused variable: `x`
   --> Main.rs:330:17
    |
330 |         let mut x = 0 as usize;
    |                 ^ help: if this is intentional, prefix it with an underscore: `_x`
    |
    = note: `#[warn(unused_variables)]` on by default

warning: variable does not need to be mutable
   --> Main.rs:330:13
    |
330 |         let mut x = 0 as usize;
    |             ----^
    |             |
    |             help: remove this `mut`
    |
    = note: `#[warn(unused_mut)]` on by default

warning: variable does not need to be mutable
   --> Main.rs:333:17
    |
333 |             let mut e = Edge {
    |                 ----^
    |                 |
    |                 help: remove this `mut`

warning: unused variable: `i`
   --> Main.rs:550:9
    |
550 |     for i in 0..n - 1 {
    |         ^ help: if this is intentional, prefix it with an underscore: `_i`

warning: unused variable: `data`
   --> Main.rs:558:13
    |
558 |     let mut data = vec![vec![0 as usize; (2) as usize]; (n) as usize];
    |             ^^^^ help: if this is intentional, prefix it with an underscore: `_data`

warning: unused variable: `i`
   --> Main.rs:568:9
    |
568 |     for i in 0..q {
    |         ^ help: if this is intentional, prefix it with an underscore: `_i`

warning: variable does not need to be mutable
   --> Main.rs:544:9
    |
544 |     let mut vec: Vec<usize> = read_vec();
    |         ----^^^
    |         |
    |         help: remove this `mut`

warning: variable does not need to be mutable
   --> Main.rs:558:9
    |
558 |     let mut data = vec![vec![0 as usize; (2) as usize]; (n) as usize];
    |         ----^^^^
    |         |
    |         help: remove this `mut`

warning: 9 warnings

ソースコード

diff #

// -*- coding:utf-8-unix -*-
// #![feature(map_first_last)]
#![allow(dead_code)]
#![allow(unused_imports)]
#![allow(unused_macros)]
use std::collections::*;
use std::convert::*;
use std::convert::{From, Into};
use std::fmt::Debug;
use std::fs::File;
use std::io::prelude::*;
use std::io::*;
use std::marker::Copy;
use std::mem::*;
use std::ops::Bound::*;
use std::ops::{Add, Mul, Neg, Sub};
use std::str;
use std::vec;
use std::{cmp, process::Output};
use std::{cmp::Ordering, env::consts::DLL_PREFIX};
use std::{cmp::Ordering::*, f32::consts::PI};
const INF: i64 = 1223372036854775807;
const UINF: usize = INF as usize;
const FINF: f64 = 122337203685.0;
const INF128: i128 = 1223372036854775807000000000000;
const LINF: i64 = 2147483647;
const MOD: i64 = 1000000007;
// const MOD: i64 = 998244353;
const T: bool = true;
const F: bool = false;

const MPI: f64 = 3.14159265358979323846264338327950288f64;
// const MOD: i64 = INF;

const UMOD: usize = MOD as usize;
use std::cmp::*;
use std::collections::*;
use std::io::stdin;
use std::io::stdout;
use std::io::Write;

use crate::kraskal::kraskal;

macro_rules! p {
    ($x:expr) => {
        println!("{}", $x);
    };
}
macro_rules! d {
    ($x:expr) => {
        println!("{:?}", $x);
    };
}
macro_rules! dd {
    (x:expr) => {
        dbg!(x);
    };
}

macro_rules! chmin {
    ($base:expr, $($cmps:expr),+ $(,)*) => {{
        let cmp_min = min!($($cmps),+);
        if $base > cmp_min {
            $base = cmp_min;
            true
        } else {
            false
        }
    }};
}

macro_rules! chmax {
    ($base:expr, $($cmps:expr),+ $(,)*) => {{
        let cmp_max = max!($($cmps),+);
        if $base < cmp_max {
            $base = cmp_max;
            true
        } else {
            false
        }
    }};
}

macro_rules! min {
    ($a:expr $(,)*) => {{
        $a
    }};
    ($a:expr, $b:expr $(,)*) => {{
        std::cmp::min($a, $b)
    }};
    ($a:expr, $($rest:expr),+ $(,)*) => {{
        std::cmp::min($a, min!($($rest),+))
    }};
}

macro_rules! max {
    ($a:expr $(,)*) => {{
        $a
    }};
    ($a:expr, $b:expr $(,)*) => {{
        std::cmp::max($a, $b)
    }};
    ($a:expr, $($rest:expr),+ $(,)*) => {{
        std::cmp::max($a, max!($($rest),+))
    }};
}

// use str::Chars;

// use str::Chars;
#[allow(dead_code)]
fn read<T: std::str::FromStr>() -> T {
    let mut s = String::new();
    std::io::stdin().read_line(&mut s).ok();
    s.trim().parse().ok().unwrap()
}

#[allow(dead_code)]
fn readi() -> (i64) {
    let mut str = String::new();
    let _ = stdin().read_line(&mut str).unwrap();
    let mut iter = str.split_whitespace();
    iter.next().unwrap().parse::<i64>().unwrap()
}

#[allow(dead_code)]
fn read_vec<T: std::str::FromStr>() -> Vec<T> {
    read::<String>()
        .split_whitespace()
        .map(|e| e.parse().ok().unwrap())
        .collect()
}
#[allow(dead_code)]
fn read_vec2<T: std::str::FromStr>(n: u32) -> Vec<Vec<T>> {
    (0..n).map(|_| read_vec()).collect()
}

#[allow(dead_code)]
fn readii() -> (i64, i64) {
    let mut str = String::new();
    let _ = stdin().read_line(&mut str).unwrap();
    let mut iter = str.split_whitespace();
    (
        iter.next().unwrap().parse::<i64>().unwrap(),
        iter.next().unwrap().parse::<i64>().unwrap(),
    )
}

fn readff() -> (f64, f64) {
    let mut str = String::new();
    let _ = stdin().read_line(&mut str).unwrap();
    let mut iter = str.split_whitespace();
    (
        iter.next().unwrap().parse::<f64>().unwrap(),
        iter.next().unwrap().parse::<f64>().unwrap(),
    )
}

#[allow(dead_code)]
fn readiii() -> (i64, i64, i64) {
    let mut str = String::new();
    let _ = stdin().read_line(&mut str).unwrap();
    let mut iter = str.split_whitespace();
    (
        iter.next().unwrap().parse::<i64>().unwrap(),
        iter.next().unwrap().parse::<i64>().unwrap(),
        iter.next().unwrap().parse::<i64>().unwrap(),
    )
}
#[allow(dead_code)]
fn readuu() -> (usize, usize) {
    let mut str = String::new();
    let _ = stdin().read_line(&mut str).unwrap();
    let mut iter = str.split_whitespace();
    (
        iter.next().unwrap().parse::<usize>().unwrap(),
        iter.next().unwrap().parse::<usize>().unwrap(),
    )
}

fn readcc() -> (char, char) {
    let mut str = String::new();
    let _ = stdin().read_line(&mut str).unwrap();
    let mut iter = str.split_whitespace();
    (
        iter.next().unwrap().parse::<char>().unwrap(),
        iter.next().unwrap().parse::<char>().unwrap(),
    )
}

#[allow(dead_code)]
fn readuuu() -> (usize, usize, usize) {
    let mut str = String::new();
    let _ = stdin().read_line(&mut str).unwrap();
    let mut iter = str.split_whitespace();
    (
        iter.next().unwrap().parse::<usize>().unwrap(),
        iter.next().unwrap().parse::<usize>().unwrap(),
        iter.next().unwrap().parse::<usize>().unwrap(),
    )
}

#[allow(dead_code)]
fn readuuuu() -> (usize, usize, usize, usize) {
    let mut str = String::new();
    let _ = stdin().read_line(&mut str).unwrap();
    let mut iter = str.split_whitespace();
    (
        iter.next().unwrap().parse::<usize>().unwrap(),
        iter.next().unwrap().parse::<usize>().unwrap(),
        iter.next().unwrap().parse::<usize>().unwrap(),
        iter.next().unwrap().parse::<usize>().unwrap(),
    )
}

fn readiiii() -> (i64, i64, i64, i64) {
    let mut str = String::new();
    let _ = stdin().read_line(&mut str).unwrap();
    let mut iter = str.split_whitespace();
    (
        iter.next().unwrap().parse::<i64>().unwrap(),
        iter.next().unwrap().parse::<i64>().unwrap(),
        iter.next().unwrap().parse::<i64>().unwrap(),
        iter.next().unwrap().parse::<i64>().unwrap(),
    )
}
#[derive(PartialEq, PartialOrd, Clone, Copy)]
pub struct F64Total(f64);

impl Eq for F64Total {}
impl Ord for F64Total {
    fn cmp(&self, other: &F64Total) -> Ordering {
        let F64Total(f1) = *self;
        let F64Total(f2) = *other;
        if f1.is_nan() {
            Less
        } else if f2.is_nan() {
            Greater
        } else {
            if (f1 - f2).is_sign_positive() {
                Greater
            } else {
                Less
            }
        }
    }
}
pub struct Dsu {
    n: usize,
    // root node: -1 * component size
    // otherwise: parent
    parent_or_size: Vec<i32>,
}

impl Dsu {
    // 0 <= size <= 10^8 is constrained.
    pub fn new(size: usize) -> Self {
        Self {
            n: size,
            parent_or_size: vec![-1; size],
        }
    }
    pub fn merge(&mut self, a: usize, b: usize) -> usize {
        assert!(a < self.n);
        assert!(b < self.n);
        let (mut x, mut y) = (self.leader(a), self.leader(b));
        if x == y {
            return x;
        }
        if -self.parent_or_size[x] < -self.parent_or_size[y] {
            std::mem::swap(&mut x, &mut y);
        }
        self.parent_or_size[x] += self.parent_or_size[y];
        self.parent_or_size[y] = x as i32;
        x
    }

    pub fn same(&mut self, a: usize, b: usize) -> bool {
        assert!(a < self.n);
        assert!(b < self.n);
        self.leader(a) == self.leader(b)
    }
    pub fn leader(&mut self, a: usize) -> usize {
        assert!(a < self.n);
        if self.parent_or_size[a] < 0 {
            return a;
        }
        self.parent_or_size[a] = self.leader(self.parent_or_size[a] as usize) as i32;
        self.parent_or_size[a] as usize
    }
    pub fn size(&mut self, a: usize) -> usize {
        assert!(a < self.n);
        let x = self.leader(a);
        -self.parent_or_size[x] as usize
    }
    pub fn groups(&mut self) -> Vec<Vec<usize>> {
        let mut leader_buf = vec![0; self.n];
        let mut group_size = vec![0; self.n];
        for i in 0..self.n {
            leader_buf[i] = self.leader(i);
            group_size[leader_buf[i]] += 1;
        }
        let mut result = vec![Vec::new(); self.n];
        for i in 0..self.n {
            result[i].reserve(group_size[i]);
        }
        for i in 0..self.n {
            result[leader_buf[i]].push(i);
        }
        result
            .into_iter()
            .filter(|x| !x.is_empty())
            .collect::<Vec<Vec<usize>>>()
    }
}

mod kraskal {
    use crate::Dsu;
    use crate::F64Total;
    pub struct Edge {
        pub u: usize,
        pub v: usize,
        pub cost: u128,
    }

    #[doc = "es: undirected edges. O(ElogV)"]
    pub fn kraskal(n: usize, ess: Vec<(usize, usize, u128)>) -> (Vec<Edge>, Vec<Edge>) {
        let mut used = vec![];
        let mut unused = vec![];
        let mut x = 0 as usize;
        let mut es = vec![];
        for i in 0..ess.len() {
            let mut e = Edge {
                u: ess[i].0,
                v: ess[i].1,
                cost: ess[i].2,
            };

            es.push(e);
        }
        es.sort_by_key(|x| x.cost);

        let mut uf = Dsu::new(n);

        for e in es {
            if !uf.same(e.u, e.v) {
                uf.merge(e.u, e.v);
                used.push(e);
            } else {
                unused.push(e);
            }
        }

        (used, unused)
    }
    pub fn kraskal_es(n: usize, es: Vec<Edge>) -> (Vec<Edge>, Vec<Edge>) {
        let mut used = vec![];
        let mut unused = vec![];

        let mut es = es;
        es.sort_by_key(|x| x.cost);

        let mut uf = Dsu::new(n);

        for e in es {
            if !uf.same(e.u, e.v) {
                uf.merge(e.u, e.v);
                used.push(e);
            } else {
                unused.push(e);
            }
        }

        (used, unused)
    }
}

trait SEGLazyImpl {
    type Monoid: Copy;
    type OperatorMonoid: Copy + PartialEq;
    fn m0() -> Self::Monoid;
    fn om0() -> Self::OperatorMonoid;
    fn f(x: Self::Monoid, y: Self::Monoid) -> Self::Monoid;
    fn g(x: Self::Monoid, y: Self::OperatorMonoid, weight: usize) -> Self::Monoid;
    fn h(x: Self::OperatorMonoid, y: Self::OperatorMonoid) -> Self::OperatorMonoid;
}

struct SEGLazy<T: SEGLazyImpl> {
    n: usize,
    data: Vec<T::Monoid>,
    lazy: Vec<T::OperatorMonoid>,
    weight: Vec<usize>,
}

impl<T: SEGLazyImpl> SEGLazy<T> {
    pub fn new(n: usize, init: T::Monoid) -> SEGLazy<T> {
        let weights = vec![1; n];
        Self::with_weight(n, init, weights)
    }
    pub fn with_weight(n: usize, init: T::Monoid, weights: Vec<usize>) -> Self {
        let mut m = 1;
        while m < n {
            m *= 2;
        }
        SEGLazy {
            n: m,
            data: vec![init; m * 2],
            lazy: vec![T::om0(); m * 2],
            weight: Self::mk_weight(&weights),
        }
    }
    fn mk_weight(xs: &[usize]) -> Vec<usize> {
        let n = xs.len();
        let mut m = 1;
        while m < n {
            m *= 2;
        }
        let mut res = vec![0; 2 * m];
        for i in 0..n {
            res[m + i] = xs[i];
        }
        for k in (1..m).rev() {
            let l = 2 * k;
            let r = 2 * k + 1;
            res[k] = res[l] + res[r];
        }
        res
    }
    fn propagate(&mut self, k: usize) {
        let weight = self.weight[k];
        if self.lazy[k] != T::om0() {
            if k < self.n {
                self.lazy[2 * k + 0] = T::h(self.lazy[2 * k + 0], self.lazy[k]);
                self.lazy[2 * k + 1] = T::h(self.lazy[2 * k + 1], self.lazy[k]);
            }
            self.data[k] = T::g(self.data[k], self.lazy[k], weight);
            self.lazy[k] = T::om0();
        }
    }
    fn do_update(
        &mut self,
        a: usize,
        b: usize,
        x: T::OperatorMonoid,
        k: usize,
        l: usize,
        r: usize,
    ) -> T::Monoid {
        self.propagate(k);
        if r <= a || b <= l {
            self.data[k]
        } else if a <= l && r <= b {
            self.lazy[k] = T::h(self.lazy[k], x);
            self.propagate(k);
            self.data[k]
        } else {
            self.data[k] = T::f(
                self.do_update(a, b, x, 2 * k + 0, l, (l + r) >> 1),
                self.do_update(a, b, x, 2 * k + 1, (l + r) >> 1, r),
            );
            self.data[k]
        }
    }
    #[doc = "[l,r)"]
    pub fn update(&mut self, l: usize, r: usize, x: T::OperatorMonoid) -> T::Monoid {
        let n = self.n;
        self.do_update(l, r, x, 1, 0, n)
    }
    fn do_query(&mut self, a: usize, b: usize, k: usize, l: usize, r: usize) -> T::Monoid {
        self.propagate(k);
        if r <= a || b <= l {
            T::m0()
        } else if a <= l && r <= b {
            self.data[k]
        } else {
            T::f(
                self.do_query(a, b, 2 * k + 0, l, (l + r) >> 1),
                self.do_query(a, b, 2 * k + 1, (l + r) >> 1, r),
            )
        }
    }
    #[doc = "[l,r)"]
    pub fn query(&mut self, l: usize, r: usize) -> T::Monoid {
        let n = self.n;
        self.do_query(l, r, 1, 0, n)
    }
}

struct RUQ;
impl SEGLazyImpl for RUQ {
    type Monoid = usize;
    type OperatorMonoid = usize;
    fn m0() -> Self::Monoid {
        0
    }
    fn om0() -> Self::OperatorMonoid {
        0
    }
    fn f(x: Self::Monoid, y: Self::Monoid) -> Self::Monoid {
        std::cmp::max(x, y)
    }
    fn g(x: Self::Monoid, y: Self::OperatorMonoid, _: usize) -> Self::Monoid {
        x ^ y
    }
    fn h(x: Self::OperatorMonoid, y: Self::OperatorMonoid) -> Self::OperatorMonoid {
        x ^ y
    }
}
// #[test]
// fn test_MAX_RUQ() {
//     let mut seg: SEGLazy<MAX_RUQ> = SEGLazy::new(10, MAX_RUQ::m0());
//     assert_eq!(seg.query(0, 3), 0);
//     seg.update(0, 2, 10); // [10,10,0,...]
//     assert_eq!(seg.query(0, 3), 10);
//     assert_eq!(seg.query(2, 3), 0);
//     seg.update(1, 5, 20);
//     assert_eq!(seg.query(0, 3), 20);
//     assert_eq!(seg.query(0, 1), 10);
//     seg.update(0, 1, 5);
//     assert_eq!(seg.query(0, 1), 5);
// }

fn dfs(
    v: usize,
    graph: &Vec<Vec<(usize, usize)>>,
    used: &mut Vec<usize>,
    d1: &mut Vec<usize>,
    d2: &mut Vec<usize>,
) {
    used[v] = 1;
    d1.push(v);
    for i in graph[v].iter() {
        let nv = (*i).0;
        if used[nv] == 1 {
            continue;
        }
        dfs(nv, &graph, used, d1, d2);
    }
    d2.push(v);
    return;
}
fn solve() {
    let (n, q) = readuu();
    let mut vec: Vec<usize> = read_vec();
    let mut seg: SEGLazy<RUQ> = SEGLazy::new(n, 0);
    for i in 0..n {
        seg.update(i, i + 1, vec[i]);
    }
    let mut graph = vec![vec![(0 as usize, 0 as usize); (0) as usize]; (n) as usize];
    for i in 0..n - 1 {
        let (mut a, mut b) = readuu();
        a -= 1;
        b -= 1;
        graph[a].push((b, 1));
        graph[b].push((a, 1));
    }
    let mut used = vec![0; n];
    let mut data = vec![vec![0 as usize; (2) as usize]; (n) as usize];
    let mut d1 = vec![];
    let mut d2 = vec![];
    dfs(0, &graph, &mut used, &mut d1, &mut d2);
    let mut dd1 = vec![0; n];
    let mut dd2 = vec![0; n];
    for i in 0..n {
        dd1[d1[i]] = i;
        dd2[d2[i]] = i;
    }
    for i in 0..q {
        let (t, x, y) = readuuu();
        let x = x - 1;
        let l = dd1[x];
        let mut r = dd2[x] + 1;
        if l == r {
            r += 1;
        }
        if t == 1 {
            seg.update(l, r, y);
        } else {
            p!(seg.query(l, r));
        }
    }
    return;
}

fn main() {
    solve();
}
0