結果
| 問題 |
No.1640 簡単な色塗り
|
| コンテスト | |
| ユーザー |
kaikey
|
| 提出日時 | 2021-08-06 22:45:24 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 127 ms / 2,000 ms |
| コード長 | 5,539 bytes |
| コンパイル時間 | 2,660 ms |
| コンパイル使用メモリ | 209,512 KB |
| 最終ジャッジ日時 | 2025-01-23 16:00:57 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 53 |
コンパイルメッセージ
main.cpp:51:72: warning: overflow in conversion from ‘double’ to ‘lint’ {aka ‘int’} changes value from ‘1.0e+18’ to ‘2147483647’ [-Woverflow]
51 | const lint MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 1e18;
| ^~~~
ソースコード
#include "bits/stdc++.h"
#include <random>
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define SZ(x) ((lint)(x).size())
#define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;++i)
#define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;--i)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
#define endk '\n'
using namespace std; typedef unsigned long long _ulong; typedef int lint; typedef long double ld; typedef pair<lint, lint> plint; typedef pair<ld, ld> pld;
struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
template<class T> auto add = [](T a, T b) -> T { return a + b; };
template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); };
template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); };
template<class T> using V = vector<T>;
using Vl = V<lint>; using VVl = V<Vl>;
template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) {
for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : "");
return os;
}
template< typename T >istream& operator>>(istream& is, vector< T >& v) {
for (T& in : v) is >> in;
return is;
}
template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
template <class T>
T div_floor(T a, T b) {
if (b < 0) a *= -1, b *= -1;
return a >= 0 ? a / b : (a + 1) / b - 1;
}
template <class T>
T div_ceil(T a, T b) {
if (b < 0) a *= -1, b *= -1;
return a > 0 ? (a - 1) / b + 1 : a / b;
}
template <class F> struct rec {
F f;
rec(F&& f_) : f(std::forward<F>(f_)) {}
template <class... Args> auto operator()(Args &&... args) const {
return f(*this, std::forward<Args>(args)...);
}
};
lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); }
lint digit(lint a) { return (lint)log10(a); }
lint e_dist(plint a, plint b) { return abs(a.first - b.first) * abs(a.first - b.first) + abs(a.second - b.second) * abs(a.second - b.second); }
lint m_dist(plint a, plint b) { return abs(a.first - b.first) + abs(a.second - b.second); }
bool check_overflow(lint a, lint b, lint limit) { if (b == 0) return false; return a > limit / b; } // a * b > c => true
void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); }
const lint MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 1e18;
lint dx[8] = { -1, 1, 0, 0, 1, -1, 1, -1 }, dy[8] = { 0, 0, 1, -1, -1, -1, 1, 1 };
bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endl; return flag; }
struct Edge {
lint from, to;
string cost;
Edge() {
}
Edge(lint u, lint v, string c) {
cost = c;
from = u;
to = v;
}
bool operator<(const Edge& e) const {
if (SZ(cost) != SZ(e.cost)) return SZ(cost) < SZ(e.cost);
else return cost < e.cost;
}
};
struct WeightedEdge {
lint to;
lint cost;
WeightedEdge(lint v, lint c) {
to = v;
cost = c;
}
bool operator<(const WeightedEdge& e) const {
return cost < e.cost;
}
};
using WeightedGraph = V<V<WeightedEdge>>;
typedef pair<lint, plint> tlint;
typedef pair<plint, plint> qlint;
typedef pair<string, lint> valstr;
struct HopcroftKarp {
vector< vector< int > > graph;
vector< int > dist, match;
vector< bool > used, vv;
HopcroftKarp(int n, int m) : graph(n), match(m, -1), used(n) {}
void add_edge(int u, int v) {
graph[u].push_back(v);
}
void bfs() {
dist.assign(graph.size(), -1);
queue< int > que;
for (int i = 0; i < graph.size(); i++) {
if (!used[i]) {
que.emplace(i);
dist[i] = 0;
}
}
while (!que.empty()) {
int a = que.front();
que.pop();
for (auto& b : graph[a]) {
int c = match[b];
if (c >= 0 && dist[c] == -1) {
dist[c] = dist[a] + 1;
que.emplace(c);
}
}
}
}
bool dfs(int a) {
vv[a] = true;
for (auto& b : graph[a]) {
int c = match[b];
if (c < 0 || (!vv[c] && dist[c] == dist[a] + 1 && dfs(c))) {
match[b] = a;
used[a] = true;
return (true);
}
}
return (false);
}
int bipartite_matching() {
int ret = 0;
while (true) {
bfs();
vv.assign(graph.size(), false);
int flow = 0;
for (int i = 0; i < graph.size(); i++) {
if (!used[i] && dfs(i)) ++flow;
}
if (flow == 0) return (ret);
ret += flow;
}
}
void output() {
Vl rev(SZ(graph));
for (int i = 0; i < match.size(); i++) {
if (~match[i]) {
rev[match[i]] = i + 1;
}
}
REP(i, SZ(rev)) cout << rev[i] << endk;
}
};
int main() {
lint N;
cin >> N;
HopcroftKarp g(N, N);
REP(i, N) {
lint u, v;
cin >> u >> v; u--; v--;
g.add_edge(i, u);
g.add_edge(i, v);
}
if (yn(g.bipartite_matching() == N)) {
g.output();
}
}
kaikey