結果
問題 | No.1574 Swap and Repaint |
ユーザー |
👑 |
提出日時 | 2021-08-07 04:28:41 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 282 ms / 10,000 ms |
コード長 | 13,329 bytes |
コンパイル時間 | 1,574 ms |
コンパイル使用メモリ | 115,612 KB |
実行使用メモリ | 18,652 KB |
最終ジャッジ日時 | 2024-10-03 12:37:50 |
合計ジャッジ時間 | 6,151 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 33 |
ソースコード
#include <cassert>#include <cmath>#include <cstdint>#include <cstdio>#include <cstdlib>#include <cstring>#include <algorithm>#include <bitset>#include <complex>#include <deque>#include <functional>#include <iostream>#include <map>#include <numeric>#include <queue>#include <set>#include <sstream>#include <string>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>using namespace std;using Int = long long;template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }////////////////////////////////////////////////////////////////////////////////template <unsigned M_> struct ModInt {static constexpr unsigned M = M_;unsigned x;constexpr ModInt() : x(0U) {}constexpr ModInt(unsigned x_) : x(x_ % M) {}constexpr ModInt(unsigned long long x_) : x(x_ % M) {}constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }ModInt pow(long long e) const {if (e < 0) return inv().pow(-e);ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;}ModInt inv() const {unsigned a = M, b = x; int y = 0, z = 1;for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }assert(a == 1U); return ModInt(y);}ModInt operator+() const { return *this; }ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }explicit operator bool() const { return x; }bool operator==(const ModInt &a) const { return (x == a.x); }bool operator!=(const ModInt &a) const { return (x != a.x); }friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }};////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////constexpr unsigned MO = 998244353U;constexpr unsigned MO2 = 2U * MO;constexpr int FFT_MAX = 23;using Mint = ModInt<MO>;constexpr Mint FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 911660635U, 372528824U, 929031873U, 452798380U, 922799308U, 781712469U, 476477967U,166035806U, 258648936U, 584193783U, 63912897U, 350007156U, 666702199U, 968855178U, 629671588U, 24514907U, 996173970U, 363395222U, 565042129U,733596141U, 267099868U, 15311432U};constexpr Mint INV_FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 86583718U, 509520358U, 337190230U, 87557064U, 609441965U, 135236158U, 304459705U,685443576U, 381598368U, 335559352U, 129292727U, 358024708U, 814576206U, 708402881U, 283043518U, 3707709U, 121392023U, 704923114U, 950391366U,428961804U, 382752275U, 469870224U};constexpr Mint FFT_RATIOS[FFT_MAX] = {911660635U, 509520358U, 369330050U, 332049552U, 983190778U, 123842337U, 238493703U, 975955924U, 603855026U,856644456U, 131300601U, 842657263U, 730768835U, 942482514U, 806263778U, 151565301U, 510815449U, 503497456U, 743006876U, 741047443U, 56250497U,867605899U};constexpr Mint INV_FFT_RATIOS[FFT_MAX] = {86583718U, 372528824U, 373294451U, 645684063U, 112220581U, 692852209U, 155456985U, 797128860U, 90816748U,860285882U, 927414960U, 354738543U, 109331171U, 293255632U, 535113200U, 308540755U, 121186627U, 608385704U, 438932459U, 359477183U, 824071951U,103369235U};// as[rev(i)] <- \sum_j \zeta^(ij) as[j]void fft(Mint *as, int n) {assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);int m = n;if (m >>= 1) {for (int i = 0; i < m; ++i) {const unsigned x = as[i + m].x; // < MOas[i + m].x = as[i].x + MO - x; // < 2 MOas[i].x += x; // < 2 MO}}if (m >>= 1) {Mint prod = 1U;for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {for (int i = i0; i < i0 + m; ++i) {const unsigned x = (prod * as[i + m]).x; // < MOas[i + m].x = as[i].x + MO - x; // < 3 MOas[i].x += x; // < 3 MO}prod *= FFT_RATIOS[__builtin_ctz(++h)];}}for (; m; ) {if (m >>= 1) {Mint prod = 1U;for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {for (int i = i0; i < i0 + m; ++i) {const unsigned x = (prod * as[i + m]).x; // < MOas[i + m].x = as[i].x + MO - x; // < 4 MOas[i].x += x; // < 4 MO}prod *= FFT_RATIOS[__builtin_ctz(++h)];}}if (m >>= 1) {Mint prod = 1U;for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {for (int i = i0; i < i0 + m; ++i) {const unsigned x = (prod * as[i + m]).x; // < MOas[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MOas[i + m].x = as[i].x + MO - x; // < 3 MOas[i].x += x; // < 3 MO}prod *= FFT_RATIOS[__builtin_ctz(++h)];}}}for (int i = 0; i < n; ++i) {as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MOas[i].x = (as[i].x >= MO) ? (as[i].x - MO) : as[i].x; // < MO}}// as[i] <- (1/n) \sum_j \zeta^(-ij) as[rev(j)]void invFft(Mint *as, int n) {assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);int m = 1;if (m < n >> 1) {Mint prod = 1U;for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {for (int i = i0; i < i0 + m; ++i) {const unsigned long long y = as[i].x + MO - as[i + m].x; // < 2 MOas[i].x += as[i + m].x; // < 2 MOas[i + m].x = (prod.x * y) % MO; // < MO}prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];}m <<= 1;}for (; m < n >> 1; m <<= 1) {Mint prod = 1U;for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {for (int i = i0; i < i0 + (m >> 1); ++i) {const unsigned long long y = as[i].x + MO2 - as[i + m].x; // < 4 MOas[i].x += as[i + m].x; // < 4 MOas[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MOas[i + m].x = (prod.x * y) % MO; // < MO}for (int i = i0 + (m >> 1); i < i0 + m; ++i) {const unsigned long long y = as[i].x + MO - as[i + m].x; // < 2 MOas[i].x += as[i + m].x; // < 2 MOas[i + m].x = (prod.x * y) % MO; // < MO}prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];}}if (m < n) {for (int i = 0; i < m; ++i) {const unsigned y = as[i].x + MO2 - as[i + m].x; // < 4 MOas[i].x += as[i + m].x; // < 4 MOas[i + m].x = y; // < 4 MO}}const Mint invN = Mint(n).inv();for (int i = 0; i < n; ++i) {as[i] *= invN;}}void fft(vector<Mint> &as) {fft(as.data(), as.size());}void invFft(vector<Mint> &as) {invFft(as.data(), as.size());}vector<Mint> convolve(vector<Mint> as, vector<Mint> bs) {if (as.empty() || bs.empty()) return {};const int len = as.size() + bs.size() - 1;int n = 1;for (; n < len; n <<= 1) {}as.resize(n); fft(as);bs.resize(n); fft(bs);for (int i = 0; i < n; ++i) as[i] *= bs[i];invFft(as);as.resize(len);return as;}vector<Mint> square(vector<Mint> as) {if (as.empty()) return {};const int len = as.size() + as.size() - 1;int n = 1;for (; n < len; n <<= 1) {}as.resize(n); fft(as);for (int i = 0; i < n; ++i) as[i] *= as[i];invFft(as);as.resize(len);return as;}////////////////////////////////////////////////////////////////////////////////constexpr int LIM = 300'010;Mint inv[LIM], fac[LIM], invFac[LIM];void prepare() {inv[1] = 1;for (int i = 2; i < LIM; ++i) {inv[i] = -((Mint::M / i) * inv[Mint::M % i]);}fac[0] = invFac[0] = 1;for (int i = 1; i < LIM; ++i) {fac[i] = fac[i - 1] * i;invFac[i] = invFac[i - 1] * inv[i];}}Mint binom(Int n, Int k) {if (n < 0) {if (k >= 0) {return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k);} else if (n - k >= 0) {return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k);} else {return 0;}} else {if (0 <= k && k <= n) {assert(n < LIM);return fac[n] * invFac[k] * invFac[n - k];} else {return 0;}}}/*A(x) := \sum_{j=0}^{N-1} A[j] x^jB(x) := x^-1 + (N - 3) x^0 + x^1C[i][j] := [x^j] (A(x) B(x)^i) (0 <= i <= N, -N <= j <= 2 N - 1)ans[i] := \sum_{j=-N}^{2N-1} C[i][j] D[j]D[j] := (contribution of balls at j)D[-1 - j] = D[j] = D[2 N - 1 - j] (0 <= j <= N - 1)transposefor e[i] (0 <= i <= N)\sum_{i=0}^N C[i][j] e[i] = [x^j] (A(x) \sum_{i=0}^N e[i] B(x)^i)DC*//*[0, n] * [0, n - m + 1][ a[0] ][ ... a[0] ][ a[m-1] ... ][ a[m-1] ][ ... ][ a[0] ][ ... ][ a[m-1] ][x^j] (rev(a) b) m - 1 <= j <= n - 1*/vector<Mint> middle(vector<Mint> as, vector<Mint> bs) {const int m = as.size();const int n = bs.size();assert(m <= n);int nn = 1;for (; nn < n; nn <<= 1) {}reverse(as.begin(), as.end());as.resize(nn, 0);fft(as);bs.resize(nn, 0);fft(bs);for (int i = 0; i < nn; ++i) {bs[i] *= as[i];}invFft(bs);bs.resize(n);bs.erase(bs.begin(), bs.begin() + (m - 1));return bs;}Mint two[LIM], invTwo[LIM];int N;vector<int> A;vector<Mint> ans;/*\sum_{i=l}^{r-1} e[i] B(x)^(i-l)*/void solve(int l, int r, const vector<Mint> &zs) {assert((int)zs.size() == 2 * (r - l - 1) + 1);if (r - l == 1) {ans[l] = zs[0];} else {const int mid = (l + r) / 2;const int nL = mid - l;const int nR = r - mid;/*[-(nL + nR - 1), nL + nR - 1] * ([-(nL - 1), (nL - 1)], [-(nL + nR - 1), nL + nR - 1])[ | 1 ][ 1 | 1 ][ 1 | 1 ][ 1 | 1 ][ | 1 ]*/vector<Mint> zsL(2 * (nL - 1) + 1);for (int i = 0; i <= 2 * (nL - 1); ++i) {zsL[i] = zs[nR + i];}/*B(x)^nL*/vector<Mint> bs(2 * nL + 1);bs[0] = 1;bs[1] = nL * Mint(N - 3);for (int j = 2; j <= 2 * nL; ++j) {bs[j] = inv[j] * ((nL - (j - 1)) * Mint(N - 3) * bs[j - 1] + (nL * 2 - (j - 2)) * bs[j - 2]);}// cerr<<"bs = ";pv(bs.begin(),bs.end());/*[-(nL + nR - 1), nL + nR - 1] * [-(nR - 1), nR - 1]*/const auto zsR = middle(bs, zs);solve(l, mid, zsL);solve(mid, r, zsR);}}int main() {prepare();two[0] = invTwo[0] = 1;for (int i = 1; i < LIM; ++i) {two[i] = two[i - 1] * 2;invTwo[i] = invTwo[i - 1] * inv[2];}for (; ~scanf("%d", &N); ) {A.resize(N);for (int j = 0; j < N; ++j) {scanf("%d", &A[j]);}/*overwritten: (1/2^(j-k+1)) * (j - k) (1/(j-k+1))! (k < j < N - 1)not overwritten: (1/2^(j-k+[j<N-1])) * (1/(j-k)!) (k <= j)*/vector<Mint> D(N, 0);{Mint sum = 0;for (int j = 0; j < N - 1; ++j) {sum += invTwo[j + 1] * j * invFac[j + 1];sum += invTwo[j + 1] * invFac[j];D[j] = sum;}}for (int k = 0; k <= N - 1; ++k) {D[N - 1] += invTwo[N - 1 - k] * invFac[N - 1 - k];}{const Mint all = two[2 * (N - 1)] * fac[N - 1];for (int j = 0; j < N; ++j) {D[j] *= all;}}// cerr<<"D = ";pv(D.begin(),D.end());// {Mint ans0=0;for(int j=0;j<N;++j){ans0+=A[j]*D[j];}cerr<<"ans0 = "<<ans0<<endl;}/*[-N, 2 N - 1] * [-N, N]*/vector<Mint> as(N), ds(3 * N);for (int j = 0; j < N; ++j) {as[j] = A[j];ds[N - 1 - j] = ds[N + j] = ds[3 * N - 1 - j] = D[j];}const auto zs = middle(as, ds);ans.assign(N + 1, 0);solve(0, N + 1, zs);for (int i = 0; i <= N; ++i) {printf("%u\n", ans[i].x);}}return 0;}