結果
問題 | No.1574 Swap and Repaint |
ユーザー | 👑 hos.lyric |
提出日時 | 2021-08-07 04:28:41 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 282 ms / 10,000 ms |
コード長 | 13,329 bytes |
コンパイル時間 | 1,574 ms |
コンパイル使用メモリ | 115,612 KB |
実行使用メモリ | 18,652 KB |
最終ジャッジ日時 | 2024-10-03 12:37:50 |
合計ジャッジ時間 | 6,151 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 7 ms
9,412 KB |
testcase_01 | AC | 7 ms
9,412 KB |
testcase_02 | AC | 8 ms
9,556 KB |
testcase_03 | AC | 7 ms
9,448 KB |
testcase_04 | AC | 8 ms
9,600 KB |
testcase_05 | AC | 7 ms
9,432 KB |
testcase_06 | AC | 8 ms
9,416 KB |
testcase_07 | AC | 8 ms
9,416 KB |
testcase_08 | AC | 7 ms
9,472 KB |
testcase_09 | AC | 9 ms
9,600 KB |
testcase_10 | AC | 8 ms
9,600 KB |
testcase_11 | AC | 7 ms
9,596 KB |
testcase_12 | AC | 8 ms
9,580 KB |
testcase_13 | AC | 9 ms
9,564 KB |
testcase_14 | AC | 8 ms
9,600 KB |
testcase_15 | AC | 9 ms
9,600 KB |
testcase_16 | AC | 8 ms
9,548 KB |
testcase_17 | AC | 8 ms
9,592 KB |
testcase_18 | AC | 73 ms
11,772 KB |
testcase_19 | AC | 274 ms
18,400 KB |
testcase_20 | AC | 68 ms
11,952 KB |
testcase_21 | AC | 65 ms
11,800 KB |
testcase_22 | AC | 63 ms
11,456 KB |
testcase_23 | AC | 21 ms
10,104 KB |
testcase_24 | AC | 235 ms
16,228 KB |
testcase_25 | AC | 129 ms
13,888 KB |
testcase_26 | AC | 14 ms
9,728 KB |
testcase_27 | AC | 55 ms
10,944 KB |
testcase_28 | AC | 276 ms
18,652 KB |
testcase_29 | AC | 272 ms
18,520 KB |
testcase_30 | AC | 270 ms
18,648 KB |
testcase_31 | AC | 270 ms
18,644 KB |
testcase_32 | AC | 268 ms
18,648 KB |
testcase_33 | AC | 271 ms
18,652 KB |
testcase_34 | AC | 282 ms
18,524 KB |
testcase_35 | AC | 271 ms
18,520 KB |
ソースコード
#include <cassert> #include <cmath> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <bitset> #include <complex> #include <deque> #include <functional> #include <iostream> #include <map> #include <numeric> #include <queue> #include <set> #include <sstream> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using Int = long long; template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; }; template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; } template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; } template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; } //////////////////////////////////////////////////////////////////////////////// template <unsigned M_> struct ModInt { static constexpr unsigned M = M_; unsigned x; constexpr ModInt() : x(0U) {} constexpr ModInt(unsigned x_) : x(x_ % M) {} constexpr ModInt(unsigned long long x_) : x(x_ % M) {} constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {} constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {} ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; } ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; } ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; } ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); } ModInt pow(long long e) const { if (e < 0) return inv().pow(-e); ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b; } ModInt inv() const { unsigned a = M, b = x; int y = 0, z = 1; for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; } assert(a == 1U); return ModInt(y); } ModInt operator+() const { return *this; } ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; } ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); } ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); } ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); } ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); } template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); } template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); } template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); } template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); } explicit operator bool() const { return x; } bool operator==(const ModInt &a) const { return (x == a.x); } bool operator!=(const ModInt &a) const { return (x != a.x); } friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; } }; //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// constexpr unsigned MO = 998244353U; constexpr unsigned MO2 = 2U * MO; constexpr int FFT_MAX = 23; using Mint = ModInt<MO>; constexpr Mint FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 911660635U, 372528824U, 929031873U, 452798380U, 922799308U, 781712469U, 476477967U, 166035806U, 258648936U, 584193783U, 63912897U, 350007156U, 666702199U, 968855178U, 629671588U, 24514907U, 996173970U, 363395222U, 565042129U, 733596141U, 267099868U, 15311432U}; constexpr Mint INV_FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 86583718U, 509520358U, 337190230U, 87557064U, 609441965U, 135236158U, 304459705U, 685443576U, 381598368U, 335559352U, 129292727U, 358024708U, 814576206U, 708402881U, 283043518U, 3707709U, 121392023U, 704923114U, 950391366U, 428961804U, 382752275U, 469870224U}; constexpr Mint FFT_RATIOS[FFT_MAX] = {911660635U, 509520358U, 369330050U, 332049552U, 983190778U, 123842337U, 238493703U, 975955924U, 603855026U, 856644456U, 131300601U, 842657263U, 730768835U, 942482514U, 806263778U, 151565301U, 510815449U, 503497456U, 743006876U, 741047443U, 56250497U, 867605899U}; constexpr Mint INV_FFT_RATIOS[FFT_MAX] = {86583718U, 372528824U, 373294451U, 645684063U, 112220581U, 692852209U, 155456985U, 797128860U, 90816748U, 860285882U, 927414960U, 354738543U, 109331171U, 293255632U, 535113200U, 308540755U, 121186627U, 608385704U, 438932459U, 359477183U, 824071951U, 103369235U}; // as[rev(i)] <- \sum_j \zeta^(ij) as[j] void fft(Mint *as, int n) { assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX); int m = n; if (m >>= 1) { for (int i = 0; i < m; ++i) { const unsigned x = as[i + m].x; // < MO as[i + m].x = as[i].x + MO - x; // < 2 MO as[i].x += x; // < 2 MO } } if (m >>= 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + m; ++i) { const unsigned x = (prod * as[i + m]).x; // < MO as[i + m].x = as[i].x + MO - x; // < 3 MO as[i].x += x; // < 3 MO } prod *= FFT_RATIOS[__builtin_ctz(++h)]; } } for (; m; ) { if (m >>= 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + m; ++i) { const unsigned x = (prod * as[i + m]).x; // < MO as[i + m].x = as[i].x + MO - x; // < 4 MO as[i].x += x; // < 4 MO } prod *= FFT_RATIOS[__builtin_ctz(++h)]; } } if (m >>= 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + m; ++i) { const unsigned x = (prod * as[i + m]).x; // < MO as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MO as[i + m].x = as[i].x + MO - x; // < 3 MO as[i].x += x; // < 3 MO } prod *= FFT_RATIOS[__builtin_ctz(++h)]; } } } for (int i = 0; i < n; ++i) { as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MO as[i].x = (as[i].x >= MO) ? (as[i].x - MO) : as[i].x; // < MO } } // as[i] <- (1/n) \sum_j \zeta^(-ij) as[rev(j)] void invFft(Mint *as, int n) { assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX); int m = 1; if (m < n >> 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + m; ++i) { const unsigned long long y = as[i].x + MO - as[i + m].x; // < 2 MO as[i].x += as[i + m].x; // < 2 MO as[i + m].x = (prod.x * y) % MO; // < MO } prod *= INV_FFT_RATIOS[__builtin_ctz(++h)]; } m <<= 1; } for (; m < n >> 1; m <<= 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + (m >> 1); ++i) { const unsigned long long y = as[i].x + MO2 - as[i + m].x; // < 4 MO as[i].x += as[i + m].x; // < 4 MO as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MO as[i + m].x = (prod.x * y) % MO; // < MO } for (int i = i0 + (m >> 1); i < i0 + m; ++i) { const unsigned long long y = as[i].x + MO - as[i + m].x; // < 2 MO as[i].x += as[i + m].x; // < 2 MO as[i + m].x = (prod.x * y) % MO; // < MO } prod *= INV_FFT_RATIOS[__builtin_ctz(++h)]; } } if (m < n) { for (int i = 0; i < m; ++i) { const unsigned y = as[i].x + MO2 - as[i + m].x; // < 4 MO as[i].x += as[i + m].x; // < 4 MO as[i + m].x = y; // < 4 MO } } const Mint invN = Mint(n).inv(); for (int i = 0; i < n; ++i) { as[i] *= invN; } } void fft(vector<Mint> &as) { fft(as.data(), as.size()); } void invFft(vector<Mint> &as) { invFft(as.data(), as.size()); } vector<Mint> convolve(vector<Mint> as, vector<Mint> bs) { if (as.empty() || bs.empty()) return {}; const int len = as.size() + bs.size() - 1; int n = 1; for (; n < len; n <<= 1) {} as.resize(n); fft(as); bs.resize(n); fft(bs); for (int i = 0; i < n; ++i) as[i] *= bs[i]; invFft(as); as.resize(len); return as; } vector<Mint> square(vector<Mint> as) { if (as.empty()) return {}; const int len = as.size() + as.size() - 1; int n = 1; for (; n < len; n <<= 1) {} as.resize(n); fft(as); for (int i = 0; i < n; ++i) as[i] *= as[i]; invFft(as); as.resize(len); return as; } //////////////////////////////////////////////////////////////////////////////// constexpr int LIM = 300'010; Mint inv[LIM], fac[LIM], invFac[LIM]; void prepare() { inv[1] = 1; for (int i = 2; i < LIM; ++i) { inv[i] = -((Mint::M / i) * inv[Mint::M % i]); } fac[0] = invFac[0] = 1; for (int i = 1; i < LIM; ++i) { fac[i] = fac[i - 1] * i; invFac[i] = invFac[i - 1] * inv[i]; } } Mint binom(Int n, Int k) { if (n < 0) { if (k >= 0) { return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k); } else if (n - k >= 0) { return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k); } else { return 0; } } else { if (0 <= k && k <= n) { assert(n < LIM); return fac[n] * invFac[k] * invFac[n - k]; } else { return 0; } } } /* A(x) := \sum_{j=0}^{N-1} A[j] x^j B(x) := x^-1 + (N - 3) x^0 + x^1 C[i][j] := [x^j] (A(x) B(x)^i) (0 <= i <= N, -N <= j <= 2 N - 1) ans[i] := \sum_{j=-N}^{2N-1} C[i][j] D[j] D[j] := (contribution of balls at j) D[-1 - j] = D[j] = D[2 N - 1 - j] (0 <= j <= N - 1) transpose for e[i] (0 <= i <= N) \sum_{i=0}^N C[i][j] e[i] = [x^j] (A(x) \sum_{i=0}^N e[i] B(x)^i) DC */ /* [0, n] * [0, n - m + 1] [ a[0] ] [ ... a[0] ] [ a[m-1] ... ] [ a[m-1] ] [ ... ] [ a[0] ] [ ... ] [ a[m-1] ] [x^j] (rev(a) b) m - 1 <= j <= n - 1 */ vector<Mint> middle(vector<Mint> as, vector<Mint> bs) { const int m = as.size(); const int n = bs.size(); assert(m <= n); int nn = 1; for (; nn < n; nn <<= 1) {} reverse(as.begin(), as.end()); as.resize(nn, 0); fft(as); bs.resize(nn, 0); fft(bs); for (int i = 0; i < nn; ++i) { bs[i] *= as[i]; } invFft(bs); bs.resize(n); bs.erase(bs.begin(), bs.begin() + (m - 1)); return bs; } Mint two[LIM], invTwo[LIM]; int N; vector<int> A; vector<Mint> ans; /* \sum_{i=l}^{r-1} e[i] B(x)^(i-l) */ void solve(int l, int r, const vector<Mint> &zs) { assert((int)zs.size() == 2 * (r - l - 1) + 1); if (r - l == 1) { ans[l] = zs[0]; } else { const int mid = (l + r) / 2; const int nL = mid - l; const int nR = r - mid; /* [-(nL + nR - 1), nL + nR - 1] * ([-(nL - 1), (nL - 1)], [-(nL + nR - 1), nL + nR - 1]) [ | 1 ] [ 1 | 1 ] [ 1 | 1 ] [ 1 | 1 ] [ | 1 ] */ vector<Mint> zsL(2 * (nL - 1) + 1); for (int i = 0; i <= 2 * (nL - 1); ++i) { zsL[i] = zs[nR + i]; } /* B(x)^nL */ vector<Mint> bs(2 * nL + 1); bs[0] = 1; bs[1] = nL * Mint(N - 3); for (int j = 2; j <= 2 * nL; ++j) { bs[j] = inv[j] * ((nL - (j - 1)) * Mint(N - 3) * bs[j - 1] + (nL * 2 - (j - 2)) * bs[j - 2]); } // cerr<<"bs = ";pv(bs.begin(),bs.end()); /* [-(nL + nR - 1), nL + nR - 1] * [-(nR - 1), nR - 1] */ const auto zsR = middle(bs, zs); solve(l, mid, zsL); solve(mid, r, zsR); } } int main() { prepare(); two[0] = invTwo[0] = 1; for (int i = 1; i < LIM; ++i) { two[i] = two[i - 1] * 2; invTwo[i] = invTwo[i - 1] * inv[2]; } for (; ~scanf("%d", &N); ) { A.resize(N); for (int j = 0; j < N; ++j) { scanf("%d", &A[j]); } /* overwritten: (1/2^(j-k+1)) * (j - k) (1/(j-k+1))! (k < j < N - 1) not overwritten: (1/2^(j-k+[j<N-1])) * (1/(j-k)!) (k <= j) */ vector<Mint> D(N, 0); { Mint sum = 0; for (int j = 0; j < N - 1; ++j) { sum += invTwo[j + 1] * j * invFac[j + 1]; sum += invTwo[j + 1] * invFac[j]; D[j] = sum; } } for (int k = 0; k <= N - 1; ++k) { D[N - 1] += invTwo[N - 1 - k] * invFac[N - 1 - k]; } { const Mint all = two[2 * (N - 1)] * fac[N - 1]; for (int j = 0; j < N; ++j) { D[j] *= all; } } // cerr<<"D = ";pv(D.begin(),D.end()); // {Mint ans0=0;for(int j=0;j<N;++j){ans0+=A[j]*D[j];}cerr<<"ans0 = "<<ans0<<endl;} /* [-N, 2 N - 1] * [-N, N] */ vector<Mint> as(N), ds(3 * N); for (int j = 0; j < N; ++j) { as[j] = A[j]; ds[N - 1 - j] = ds[N + j] = ds[3 * N - 1 - j] = D[j]; } const auto zs = middle(as, ds); ans.assign(N + 1, 0); solve(0, N + 1, zs); for (int i = 0; i <= N; ++i) { printf("%u\n", ans[i].x); } } return 0; }