結果

問題 No.1640 簡単な色塗り
ユーザー yuruhiya
提出日時 2021-08-07 13:10:15
言語 Crystal
(1.14.0)
結果
AC  
実行時間 172 ms / 2,000 ms
コード長 18,075 bytes
コンパイル時間 10,970 ms
コンパイル使用メモリ 304,128 KB
実行使用メモリ 57,264 KB
最終ジャッジ日時 2024-06-29 16:48:36
合計ジャッジ時間 21,780 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 53
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

# require "/template"
# require "./scanner"
# ### Specifications
#
# ```plain
# Inside input macro | Expanded code
# ----------------------------------------------+---------------------------------------
# Uppercase string: Int32, Int64, Float64, etc. | {}.new(Scanner.s)
# s | Scanner.s
# c | Scanner.c
# Other lowercase string: i, i64, f, etc. | Scanner.s.to_{}
# operator[]: type[size] | Array.new(input(size)) { input(type) }
# Tuple literal: {t1, t2, t3} | {input(t1), input(t2), input(t3)}
# Array literal: [t1, t2, t3] | [input(t1), input(t2), input(t3)]
# Range literal: t1..t2 | input(t1)..input(t2)
# If: cond ? t1 : t2 | cond ? input(t1) : input(t2)
# Assign: target = value | target = input(value)
# ```
#
# ### Examples
#
# Input:
# ```plain
# 5 3
# foo bar
# 1 2 3 4 5
# ```
# ```
# n, m = input(Int32, Int64) # => {5, 10i64}
# input(String, Char[m]) # => {"foo", ['b', 'a', 'r']}
# input(Int32[n]) # => [1, 2, 3, 4, 5]
# ```
# ```
# n, m = input(i, i64) # => {5, 10i64}
# input(s, c[m]) # => {"foo", ['b', 'a', 'r']}
# input(i[n]) # => [1, 2, 3, 4, 5]
# ```
#
# Input:
# ```plain
# 2 3
# 1 2 3
# 4 5 6
# ```
#
# ```
# h, w = input(i, i) # => {2, 3}
# input(i[h, w]) # => [[1, 2, 3], [4, 5, 6]]
# ```
# ```
# input(i[i][i]) # => [[1, 2, 3], [4, 5, 6]]
# ```
#
# Input:
# ```plain
# 5 3
# 3 1 4 2 5
# 1 2
# 2 3
# 3 1
# ```
# ```
# n, m = input(i, i) # => {5, 3}
# input(i.pred[n]) # => [2, 0, 3, 1, 4]
# input({i - 1, i - 1}[m]) # => [{0, 1}, {1, 2}, {2, 0}]
# ```
#
# Input:
# ```plain
# 3
# 1 2
# 2 2
# 3 2
# ```
# ```
# input({tmp = i, tmp == 1 ? i : i.pred}[i]) # => [{1, 2}, {2, 1}, {3, 1}]
# ```
#
# Input:
# ```plain
# 3
# 1 2
# 2 3
# 3 1
# ```
# ```
# n = input(i)
# input_column({Int32, Int32}, n) # => {[1, 2, 3], [2, 3, 1]}
# ```
class Scanner
private def self.skip_to_not_space
peek = STDIN.peek
not_space = peek.index { |x| x != 32 && x != 10 } || peek.size
STDIN.skip(not_space)
end
def self.c
skip_to_not_space
STDIN.read_char.not_nil!
end
def self.s
skip_to_not_space
peek = STDIN.peek
if index = peek.index { |x| x == 32 || x == 10 }
STDIN.skip(index + 1)
return String.new(peek[0, index])
end
String.build do |buffer|
loop do
buffer.write peek
STDIN.skip(peek.size)
peek = STDIN.peek
break if peek.empty?
if index = peek.index { |x| x == 32 || x == 10 }
buffer.write peek[0, index]
STDIN.skip(index)
break
end
end
end
end
end
macro internal_input(type, else_ast)
{% if Scanner.class.has_method?(type.id) %}
Scanner.{{type.id}}
{% elsif type.stringify == "String" %}
Scanner.s
{% elsif type.stringify == "Char" %}
Scanner.c
{% elsif type.stringify =~ /[A-Z][a-z0-9_]*/ %}
{{type.id}}.new(Scanner.s)
{% elsif String.has_method?("to_#{type}".id) %}
Scanner.s.to_{{type.id}}
{% else %}
{{else_ast}}
{% end %}
end
macro internal_input_array(type, args)
{% for i in 0...args.size %}
%size{i} = input({{args[i]}})
{% end %}
{% begin %}
{% for i in 0...args.size %} Array.new(%size{i}) { {% end %}
input({{type.id}})
{% for i in 0...args.size %} } {% end %}
{% end %}
end
macro input(type)
{% if type.is_a?(Call) %}
{% if type.receiver.is_a?(Nop) %}
internal_input(
{{type.name}}, {{type.name}}(
{% for argument in type.args %} input({{argument}}), {% end %}
)
)
{% elsif type.name.stringify == "[]" %}
internal_input_array({{type.receiver}}, {{type.args}})
{% else %}
input({{type.receiver}}).{{type.name.id}}(
{% for argument in type.args %} input({{argument}}), {% end %}
) {{type.block}}
{% end %}
{% elsif type.is_a?(TupleLiteral) %}
{ {% for i in 0...type.size %} input({{type[i]}}), {% end %} }
{% elsif type.is_a?(ArrayLiteral) %}
[ {% for i in 0...type.size %} input({{type[i]}}), {% end %} ]
{% elsif type.is_a?(RangeLiteral) %}
Range.new(input({{type.begin}}), input({{type.end}}), {{type.excludes_end?}})
{% elsif type.is_a?(If) %}
{{type.cond}} ? input({{type.then}}) : input({{type.else}})
{% elsif type.is_a?(Assign) %}
{{type.target}} = input({{type.value}})
{% else %}
internal_input({{type.id}}, {{type.id}})
{% end %}
end
macro input(*types)
{ {% for type in types %} input({{type}}), {% end %} }
end
macro input_column(types, size)
{% for type, i in types %}
%array{i} = Array({{type}}).new({{size}})
{% end %}
{{size}}.times do
{% for type, i in types %}
%array{i} << input({{type}})
{% end %}
end
{ {% for type, i in types %} %array{i}, {% end %} }
end
# require "./tuple/times"
struct Tuple
def times(&block) : Nil
{% begin %}
{% for i in 0...@type.size %}
{% if @type[i].has_method?(:each) %}
self[{{i}}].each do |i{{i}}|
{% else %}
self[{{i}}].times do |i{{i}}|
{% end %}
{% end %}
yield({% for i in 0...@type.size %} i{{i}}, {% end %})
{% for i in 0...@type.size %} end {% end %}
{% end %}
end
private class TimesIterator(T)
include Iterator(T)
def initialize(@n : T)
tuple = {% begin %}
{ {% for i in 0...T.size %} T[{{i}}].zero, {% end %} }
{% end %}
@index = tuple.as(T)
@first = true
end
def next
if @first
@first = false
return @index
end
{% begin %}
{%
type = @type.type_vars[0]
size = type.size
%}
{% for i in 1..size %}
if @index[{{size - i}}] < @n[{{size - i}}] - 1
@index = {
{% for j in 0...size %}
{% if j < size - i %}
@index[{{j}}],
{% elsif j == size - i %}
@index[{{j}}] + 1,
{% else %}
{{type[j]}}.zero,
{% end %}
{% end %}
}
return @index
end
{% end %}
stop
{% end %}
end
end
def times
TimesIterator(self).new(self)
end
end
# require "./comparable/min_max"
module Comparable(T)
def min(x : T)
self > x ? x : self
end
def max(x : T)
self < x ? x : self
end
end
# require "./array/new"
class Array
def self.new(sizes : Tuple(*T), initial_value) forall T
{% begin %}
{% for i in 0...T.size %} Array.new(sizes[{{i}}]) { {% end %}
initial_value
{% for i in 0...T.size %} } {% end %}
{% end %}
end
def self.new(sizes : Tuple(*T), &block) forall T
{% begin %}
{% for i in 0...T.size %} Array.new(sizes[{{i}}]) { |%i{i}| {% end %}
yield({% for i in 0...T.size %} %i{i}, {% end %})
{% for i in 0...T.size %} } {% end %}
{% end %}
end
end
# require "./array/change"
class Array(T)
def chmin(i : Int, value : T)
(self[i] > value).tap do |f|
self[i] = value if f
end
end
protected def chmin(i : Int, *indexes, value)
self[i].chmin(*indexes, value: value)
end
def chmin(indexes : Tuple, value)
chmin(*indexes, value: value)
end
def chmax(i : Int, value : T)
(self[i] < value).tap do |f|
self[i] = value if f
end
end
protected def chmax(i : Int, *indexes, value)
self[i].chmax(*indexes, value: value)
end
def chmax(indexes : Tuple, value)
chmax(*indexes, value: value)
end
end
# require "/graph/decompose"
# require "../graph"
# require "./graph/edge"
struct WeightedEdge(T)
include Comparable(WeightedEdge(T))
property to : Int32, cost : T
def initialize(@to, @cost : T)
end
def <=>(other : WeightedEdge(T))
{cost, to} <=> {other.cost, other.to}
end
def to_s(io) : Nil
io << '(' << to << ", " << cost << ')'
end
def inspect(io) : Nil
io << "->#{to}(#{cost})"
end
end
struct WeightedEdge2(T)
include Comparable(WeightedEdge2(T))
property from : Int32, to : Int32, cost : T
def initialize(@from, @to, @cost : T)
end
def initialize(@from, edge : WeightedEdge(T))
@to, @cost = edge.to, edge.cost
end
def <=>(other : WeightedEdge2(T))
{cost, from, to} <=> {other.cost, other.from, other.to}
end
def reverse
WeightedEdge2(T).new(to, from, cost)
end
def sort
WeightedEdge2(T).new(*{to, from}.minmax, cost)
end
def to_s(io) : Nil
io << '(' << from << ", " << to << ", " << cost << ')'
end
def inspect(io) : Nil
io << from << "->" << to << '(' << cost << ')'
end
end
struct UnweightedEdge
property to : Int32
def initialize(@to)
end
def initialize(@to, cost)
end
def cost
1
end
def to_s(io) : Nil
io << to
end
def inspect(io) : Nil
io << "->" << to
end
end
struct UnweightedEdge2
property from : Int32, to : Int32
def initialize(@from, @to)
end
def initialize(@from, @to, cost)
end
def initialize(@from, edge : UnweightedEdge)
@to = edge.to
end
def cost
1
end
def reverse
UnweightedEdge2.new(to, from)
end
def sort
UnweightedEdge2.new(*{to, from}.minmax)
end
def to_s(io) : Nil
io << '(' << from << ", " << to << ')'
end
def inspect(io) : Nil
io << from << "->" << to
end
end
module Graph(Edge, Edge2)
include Enumerable(Edge2)
getter graph : Array(Array(Edge))
def initialize(size : Int)
@graph = Array(Array(Edge)).new(size) { [] of Edge }
end
def initialize(size : Int, edges : Enumerable)
initialize(size)
add_edges(edges)
end
# Add *edge*.
abstract def <<(edge : Edge2)
# :ditto:
def <<(edge : Tuple)
self << Edge2.new(*edge)
end
def add_edges(edges : Enumerable)
edges.each { |edge| self << edge }
end
delegate size, to: @graph
delegate :[], to: @graph
# Yields each edge of the graph, ans returns `nil`.
def each(&) : Nil
(0...size).each do |v|
self[v].each do |edge|
yield Edge2.new(v, edge)
end
end
end
def reverse
if self.class.directed?
each_with_object(self.class.new(size)) do |edge, reversed|
reversed << edge.reverse
end
else
dup
end
end
def to_undirected
if self.class.directed?
each_with_object(self.class.new(size)) do |edge, graph|
graph << edge
graph << edge.reverse if self.class.directed?
end
else
dup
end
end
def to_s(io : IO) : Nil
io << '['
join(", ", io) do |edge, io|
edge.inspect io
end
io << ']'
end
def inspect(io : IO) : Nil
io << "[\n"
graph.each do |edges|
io << " " << edges << ",\n"
end
io << ']'
end
end
class DirectedGraph(T)
include Graph(WeightedEdge(T), WeightedEdge2(T))
def initialize(size : Int)
super
end
def initialize(size : Int, edges : Enumerable(WeightedEdge2(T)))
super
end
def initialize(size : Int, edges : Enumerable({Int32, Int32, T}))
super
end
def <<(edge : WeightedEdge2(T))
raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size
@graph[edge.from] << WeightedEdge.new(edge.to, edge.cost)
self
end
def self.weighted?
true
end
def self.directed?
true
end
end
class UndirectedGraph(T)
include Graph(WeightedEdge(T), WeightedEdge2(T))
def initialize(size : Int)
super
end
def initialize(size : Int, edges : Enumerable(WeightedEdge2(T)))
super
end
def initialize(size : Int, edges : Enumerable({Int32, Int32, T}))
super
end
def <<(edge : WeightedEdge2(T))
raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size
@graph[edge.from] << WeightedEdge.new(edge.to, edge.cost)
@graph[edge.to] << WeightedEdge.new(edge.from, edge.cost)
self
end
def self.weighted?
true
end
def self.directed?
false
end
end
class UnweightedDirectedGraph
include Graph(UnweightedEdge, UnweightedEdge2)
def initialize(size : Int)
super
end
def initialize(size : Int, edges : Enumerable)
super
end
def <<(edge : UnweightedEdge2)
raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size
@graph[edge.from] << UnweightedEdge.new(edge.to)
self
end
def self.weighted?
false
end
def self.directed?
true
end
end
class UnweightedUndirectedGraph
include Graph(UnweightedEdge, UnweightedEdge2)
def initialize(size : Int)
super
end
def initialize(size : Int, edges : Enumerable)
super
end
def <<(edge : UnweightedEdge2)
raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size
@graph[edge.from] << UnweightedEdge.new(edge.to)
@graph[edge.to] << UnweightedEdge.new(edge.from)
self
end
def each_child(vertex : Int, parent, &block) : Nil
graph[vertex].each do |u|
yield u if u != parent
end
end
def each_child(vertex : Int, parent)
graph[vertex].each.select { |u| u != parent }
end
def self.weighted?
false
end
def self.directed?
false
end
end
# require "../datastructure/union_find"
class UnionFind
@d : Array(Int32)
def initialize(n : Int)
@d = Array.new(n, -1)
end
def initialize(n : Int, edges : Enumerable({Int32, Int32}))
initialize(n)
edges.each { |u, v| unite(u, v) }
end
def root(x : Int)
@d[x] < 0 ? x : (@d[x] = root(@d[x]))
end
def unite(x : Int, y : Int)
x = root(x)
y = root(y)
return false if x == y
x, y = y, x if @d[x] > @d[y]
@d[x] += @d[y]
@d[y] = x
true
end
def same?(x : Int, y : Int)
root(x) == root(y)
end
def size(x : Int)
-@d[root(x)]
end
def groups
groups = Hash(Int32, Set(Int32)).new { |h, k| h[k] = Set(Int32).new }
@d.size.times do |i|
groups[root(i)] << i
end
groups.values.to_set
end
end
module Graph(Edge, Edge2)
# Decomposes the graph into each conected components.
def decompose : {Array(self), Array({Int32, Int32}), Array(Array(Int32))}
uf = UnionFind.new(size)
each do |edge|
uf.unite(edge.from, edge.to)
end
groups = uf.groups.to_a
index = Array.new(size, {-1, -1})
groups.each_with_index do |group, i|
group.each_with_index do |v, j|
index[v] = {i, j}
end
end
normalize = Array.new(groups.size) { |i| Array.new(groups[i].size, -1) }
index.each_with_index { |(i, j), k| normalize[i][j] = k }
graphs = Array.new(groups.size) { |i| self.class.new(groups[i].size) }
if self.class.directed?
each do |edge|
i1, j1 = index[edge.from]
_, j2 = index[edge.to]
graphs[i1] << {j1, j2, edge.cost}
end
else
edge_set = Set(Edge2).new
each do |edge|
if edge_set.add?(edge.sort)
i1, j1 = index[edge.from]
_, j2 = index[edge.to]
graphs[i1] << {j1, j2, edge.cost}
end
end
end
{graphs, index, normalize}
end
end
# require "/graph/namori_decompose"
# require "../graph"
# require "./degree"
# require "../graph"
module Graph(Edge, Edge2)
# Returns table of indegree.
def indegree : Array(Int32)
each_with_object(Array.new(size, 0)) do |edge, cnt|
cnt[edge.to] += 1
end
end
# Returns table of outdegree.
def outdegree : Array(Int32)
each_with_object(Array.new(size, 0)) do |edge, cnt|
cnt[edge.from] += 1
end
end
end
module Graph(Edge, Edge2)
# Returns forest and cycle of the undirected graph with equal number of vertices and edges.
def namori_decompose : {self, Array(Int32)}
raise ArgumentError.new unless !self.class.directed?
raise ArgumentError.new unless size == graph.sum(&.size) // 2
deg = Array.new(size) { |i| self[i].size }
que = Deque(Int32).new
flag = Array.new(size, false)
(0...size).each do |i|
if deg[i] == 1
que << i
flag[i] = true
end
end
forest = self.class.new(size)
while v = que.shift?
self[v].each do |edge|
next if flag[edge.to]
deg[edge.to] -= 1
forest << Edge2.new(v, edge)
if deg[edge.to] == 1
que << edge.to
flag[edge.to] = true
end
end
end
cycle = [] of Int32
(0...size).each do |i|
que << i unless flag[i]
while v = que.pop?
next if flag[v]
cycle << v
flag[v] = true
self[v].each do |edge|
que << edge.to unless flag[edge.to]
end
end
end
{forest, cycle}
end
end
def dfs(graph, v, p, dist, a)
a[v] = dist
graph[v].each do |edge|
next if edge.to == p
dfs(graph, edge.to, v, dist + 1, a)
end
end
n = input(i)
edges = input({i - 1, i - 1}[n])
ans = Array(Int32?).new(n, nil)
g = UndirectedGraph.new n, edges.each_with_index.map { |(e, i)| {e[0], e[1], i} }
graphs, index, normalize = g.decompose
graphs.zip(normalize) do |graph, normalize|
if graph.size != graph.graph.sum(&.size) // 2
puts "No"; exit
end
forest, cycle = graph.namori_decompose
dist = [0] * graph.size
cycle_index = [nil.as Int32?] * graph.size
cycle.each_with_index do |v, i|
cycle_index[v] = i
dfs(forest, v, -1, 0, dist)
end
flag = false
graph.each do |edge|
d_from, d_to = dist[edge.from], dist[edge.to]
c_from, c_to = cycle_index[edge.from], cycle_index[edge.to]
if d_from < d_to
ans[edge.cost] = normalize[edge.to]
elsif d_from == d_to && c_from.not_nil! <= c_to.not_nil!
if {edge.from, edge.to} == {cycle.first, cycle.last}
if cycle.size == 2
ans[edge.cost] = normalize[flag ? edge.to : edge.from]
flag = true
else
ans[edge.cost] = normalize[edge.to]
end
else
ans[edge.cost] = normalize[edge.from]
end
end
end
end
puts "Yes", ans.join('\n', &.not_nil!.succ)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0