結果

問題 No.310 2文字しりとり
ユーザー rickytheta
提出日時 2015-12-26 00:45:00
言語 C++11(廃止可能性あり)
(gcc 13.3.0)
結果
AC  
実行時間 783 ms / 6,000 ms
コード長 5,400 bytes
コンパイル時間 1,653 ms
コンパイル使用メモリ 168,772 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-19 00:07:35
合計ジャッジ時間 6,749 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 28
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef vector<int> vi;
typedef vector<ll> vl;
typedef complex<double> P;
typedef pair<int,int> pii;
#define REP(i,n) for(ll i=0;i<n;++i)
#define REPR(i,n) for(ll i=1;i<n;++i)
#define FOR(i,a,b) for(ll i=a;i<b;++i)
#define DEBUG(x) cout<<#x<<": "<<x<<endl
#define DEBUG_VEC(v) cout<<#v<<":";REP(i,v.size())cout<<" "<<v[i];cout<<endl
#define ALL(a) (a).begin(),(a).end()
#define MOD (ll)(1e9+7)
#define ADD(a,b) a=((a)+(b))%MOD
#define FIX(a) ((a)%MOD+MOD)%MOD
#define V_MAX 4010
struct UF{
vi data;
UF(int size):data(size,-1){}
int root(int a){
return data[a]<0 ? a : data[a]=root(data[a]);
}
void unite(int a,int b){
a=root(a);
b=root(b);
if(a!=b){
if(data[b]<data[a])swap(a,b);
data[a] += data[b];
data[b] = a;
}
}
bool same(int a,int b){
return root(a) == root(b);
}
int size(int a){
return -data[root(a)];
}
};
ll fact[V_MAX];
void fact_init(){
fact[0] = 1;
REPR(i,V_MAX){
fact[i] = i*fact[i-1];
fact[i] %= MOD;
}
}
int inv(ll a){
ll t = MOD-2;
ll res = 1;
while(t){
if(t&1==1){
res = res*a%MOD;
}
t >>= 1;
a = a*a%MOD;
}
return res;
}
ll C[V_MAX+1],B[V_MAX],T[V_MAX];
ll _N;
ll berlekamp_massey(ll s[]){
ll N = 2*_N;
ll L=0,m=1,b=1,Bsz=1;
C[0]=1;
B[0]=1;
REP(n,N){
ll d = s[n];
REPR(i,L+1) d += C[i]*s[n-i]%MOD;
d %= MOD;
if(d==0){
++m;
}else if(2*L <= n){
// copy C to T
// calc C from C&B
// copy T to B
// C->T, C<-C&B, B<-T
REP(i,L+1)T[i]=C[i];
ll rate = (MOD-(d*inv(b))%MOD)%MOD;
REP(i,Bsz) C[m+i] = (C[m+i]+rate*B[i])%MOD;
Bsz = L+1;
L = n+1-L;
REP(i,Bsz)B[i]=T[i];
b = d;
m = 1;
}else{
ll rate = (MOD-(d*inv(b))%MOD)%MOD;
REP(i,Bsz) C[m+i] = (C[m+i]+rate*B[i])%MOD;
++m;
}
}
return L+1;
}
typedef unsigned long ul;
ul xorshift(){
static ul x = 123456789,
y = 362436069,
z = 521288629,
w = 88675123;
ul t;
t = x^(x<<11);
x = y;
y = z;
z = w;
return w = (w^(w>>19))^(t^(t>>8));
}
pii edges[V_MAX+1];
//
// -1
// -1(0)M
ll det(ll n,ll dmat[],ll m,ll beg,ll end){
if(n<=0)return 1;
_N = n;
ll b[n],u[n];
ll D[n]; // diagonal matrix
REP(i,n){
b[i]=0;
while(b[i]==0)b[i] = xorshift()%MOD;
u[i]=0;
while(u[i]==0)u[i] = xorshift()%MOD;
D[i]=0;
while(D[i]==0)D[i] = xorshift()%MOD;
}
ll a[2*n];
a[0]=0;
REP(j,n)a[0]+=u[j]*b[j]%MOD;
a[0]%=MOD;
ll mb[n];
REPR(i,2*n){
// a_i = u^T * ( mat*D * (mat*D)^(i-1) * b)
//
ll sum = 0;
REP(j,n){
b[j] = (b[j]*D[j])%MOD;
sum = (sum+b[j])%MOD;
}
REP(j,n){
mb[j] = FIX(b[j]*dmat[j]-sum);
}
if(beg!=-1 && end!=-1 && beg<n && end<n){
mb[end] = FIX(mb[end]-b[beg]);
}
REP(j,m){
pii e = edges[j];
if(e.first!=-1 && e.second!=-1 && e.first<n && e.second<n){
mb[e.first] = FIX(mb[e.first]+b[e.second]);
}
}
REP(j,n)b[j]=mb[j];
a[i] = 0;
REP(j,n){
a[i] = FIX(a[i]+u[j]*b[j]);
}
}
ll minimal = berlekamp_massey(a);
if(minimal<n+1)return -1;
ll ret = 1;
ll detd = 1;
REP(i,n)detd = (detd*D[i])%MOD;
ret = C[n] * inv(detd) % MOD;
if(n%2==1)ret = MOD-ret;
ret %= MOD;
return ret;
}
ll solve(){
xorshift();
int n,m;
cin >> n >> m;
ll indeg[n],outdeg[n];
REP(i,n)indeg[i]=outdeg[i]=n;
REP(i,m){
int a,b;
cin >> a >> b;
--a;--b;
edges[i] = make_pair(a,b);
outdeg[a]--;
indeg[b]--;
}
// no edge
if(n*n==m)return 1;
// check eulerian
int beg=-1,end=-1;
REP(i,n){
if(indeg[i]==outdeg[i])continue;
if(beg==-1 && indeg[i]==outdeg[i]-1){
beg=i;
continue;
}
if(end==-1 && indeg[i]-1==outdeg[i]){
end=i;
continue;
}
return 0;
}
if(beg!=-1 && end==-1)return 0;
if(beg==-1 && end!=-1)return 0;
if(beg!=-1 && end!=-1){
outdeg[end]++;
indeg[beg]++;
}
// check & delete isolation
sort(edges,edges+m);
UF uf = UF(n);
int root = -1;
int iter = 0;
REP(i,n){
if(root==-1 && indeg[i]>0) root = i;
REP(j,n){
if(iter<m && edges[iter].first == i && edges[iter].second == j){
++iter;
}else{
uf.unite(i,j);
}
}
}
if(root==-1)return 1;
int mp[n];
int t = 0;
ll deg[n];
REP(i,n){
if(!uf.same(root,i)){
if(indeg[i]>0){
return 0;
}
mp[i] = -1;
}else{
mp[i] = t;
deg[t] = outdeg[i];
++t;
}
}
REP(i,m){
edges[i].first = mp[edges[i].first];
edges[i].second = mp[edges[i].second];
}
if(beg!=-1 && end!=-1){
beg = mp[beg];
end = mp[end];
if(beg==-1 || end==-1)return 0;
}
// BEST theorem
// ec(G) = t_w(G) PI_{v in V}(deg(v)-1)!
// matrix tree theorem
// t_w(G) = (determinant of Laplacian matrix)
fact_init();
ll result = 1;
REP(i,t){
result *= fact[deg[i]-1];
result %= MOD;
}
ll dt = det(t-1,deg,m,beg,end);
result *= dt;
result %= MOD;
if(beg==-1 && end==-1){
result *= n*n-m;
result %= MOD;
}
return result;
}
int main(){
// counting eulerian circuit
cout << solve() << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0