結果

問題 No.334 門松ゲーム
ユーザー stoqstoq
提出日時 2021-08-09 18:49:28
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 57 ms / 2,000 ms
コード長 5,148 bytes
コンパイル時間 4,715 ms
コンパイル使用メモリ 269,808 KB
実行使用メモリ 26,792 KB
最終ジャッジ日時 2024-09-21 17:41:15
合計ジャッジ時間 5,879 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 44 ms
26,628 KB
testcase_01 AC 43 ms
26,636 KB
testcase_02 AC 43 ms
26,728 KB
testcase_03 AC 41 ms
26,668 KB
testcase_04 AC 57 ms
26,668 KB
testcase_05 AC 43 ms
26,700 KB
testcase_06 AC 42 ms
26,696 KB
testcase_07 AC 45 ms
26,672 KB
testcase_08 AC 44 ms
26,680 KB
testcase_09 AC 43 ms
26,752 KB
testcase_10 AC 47 ms
26,692 KB
testcase_11 AC 44 ms
26,792 KB
testcase_12 AC 43 ms
26,628 KB
testcase_13 AC 42 ms
26,664 KB
testcase_14 AC 45 ms
26,644 KB
testcase_15 AC 45 ms
26,728 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#define MOD_TYPE 2

#pragma region Macros

#include <bits/stdc++.h>
using namespace std;

#include <atcoder/all>
using namespace atcoder;

#if 0
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/multiprecision/cpp_int.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif

#if 1
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif

using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;

#if MOD_TYPE == 1
constexpr ll MOD = ll(1e9 + 7);
#else
constexpr ll MOD = 998244353;
#endif
using mint = static_modint<MOD>;
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-11;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};

#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define Yay(n) cout << ((n) ? "Yay!" : ":(") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";

struct io_init {
  io_init() {
    cin.tie(0);
    ios::sync_with_stdio(false);
    cout << setprecision(30) << setiosflags(ios::fixed);
  };
} io_init;
template <typename T>
inline bool chmin(T &a, T b) {
  if (a > b) {
    a = b;
    return true;
  }
  return false;
}
template <typename T>
inline bool chmax(T &a, T b) {
  if (a < b) {
    a = b;
    return true;
  }
  return false;
}
inline ll CEIL(ll a, ll b) { return (a + b - 1) / b; }
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val) {
  fill((T *)array, (T *)(array + N), val);
}
template <typename T>
vector<T> compress(vector<T> &v) {
  vector<T> val = v;
  sort(all(val)), val.erase(unique(all(val)), val.end());
  for (auto &&vi : v) vi = lower_bound(all(val), vi) - val.begin();
  return val;
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept {
  is >> p.first >> p.second;
  return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> p) noexcept {
  os << p.first << " " << p.second;
  return os;
}
ostream &operator<<(ostream &os, mint m) {
  os << m.val();
  return os;
}

random_device seed_gen;
mt19937_64 engine(seed_gen());

struct BiCoef {
  vector<mint> fact_, inv_, finv_;
  BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
    fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
    int MOD = fact_[0].mod();
    for (int i = 2; i < n; i++) {
      fact_[i] = fact_[i - 1] * i;
      inv_[i] = -inv_[MOD % i] * (MOD / i);
      finv_[i] = finv_[i - 1] * inv_[i];
    }
  }
  mint C(ll n, ll k) const noexcept {
    if (n < k || n < 0 || k < 0) return 0;
    return fact_[n] * finv_[k] * finv_[n - k];
  }
  mint P(ll n, ll k) const noexcept { return C(n, k) * fact_[k]; }
  mint H(ll n, ll k) const noexcept { return C(n + k - 1, k); }
  mint Ch1(ll n, ll k) const noexcept {
    if (n < 0 || k < 0) return 0;
    mint res = 0;
    for (int i = 0; i < n; i++)
      res += C(n, i) * mint(n - i).pow(k) * (i & 1 ? -1 : 1);
    return res;
  }
  mint fact(ll n) const noexcept {
    if (n < 0) return 0;
    return fact_[n];
  }
  mint inv(ll n) const noexcept {
    if (n < 0) return 0;
    return inv_[n];
  }
  mint finv(ll n) const noexcept {
    if (n < 0) return 0;
    return finv_[n];
  }
};

BiCoef bc(2000010);

#pragma endregion

bool is_kadomatsu(vector<int> &a) {
  if (a[0] == a[1] or a[1] == a[2] or a[0] == a[2]) return false;
  if (a[0] < a[1] and a[1] > a[2] or a[0] > a[1] and a[1] < a[2]) return true;
  return false;
}

bool is_kadomatsu(int a, int b, int c) {
  vector<int> v = {a, b, c};
  return is_kadomatsu(v);
}

int n;
int a[12];
vector<int> ans;

bool f(int msk) {
  bool res = false;
  rep(i, n) REP(j, i + 1, n) REP(k, j + 1, n) {
    if (!(msk & (1 << i))) continue;
    if (!(msk & (1 << j))) continue;
    if (!(msk & (1 << k))) continue;
    if (not is_kadomatsu(a[i], a[j], a[k])) continue;
    int nxt = msk;
    nxt &= ~(1 << i);
    nxt &= ~(1 << j);
    nxt &= ~(1 << k);
    if (not f(nxt)) {
      if (msk == (1 << n) - 1) {
        ans.push_back(i);
        ans.push_back(j);
        ans.push_back(k);
      }
      res = true;
      goto end;
    }
  }
  end:
  return res;
}

void solve() {
  cin >> n;
  rep(i, n) cin >> a[i];
  f((1 << n) - 1);
  if (ans.empty()) ans.push_back(-1);
  rep(i, ans.size()) cout << ans[i] << (i + 1 == ans.size() ? "\n" : " ");
}

int main() { solve(); }
0