結果

問題 No.1649 Manhattan Square
ユーザー 👑 emthrmemthrm
提出日時 2021-08-13 22:57:13
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 250 ms / 3,000 ms
コード長 7,141 bytes
コンパイル時間 2,396 ms
コンパイル使用メモリ 213,236 KB
最終ジャッジ日時 2025-01-23 20:46:36
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 43
権限があれば一括ダウンロードができます

ソースコード

diff #

#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

template <int M>
struct MInt {
  unsigned int val;
  MInt(): val(0) {}
  MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {}
  static constexpr int get_mod() { return M; }
  static void set_mod(int divisor) { assert(divisor == M); }
  static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); }
  static MInt inv(int x, bool init = false) {
    // assert(0 <= x && x < M && std::__gcd(x, M) == 1);
    static std::vector<MInt> inverse{0, 1};
    int prev = inverse.size();
    if (init && x >= prev) {
      // "x!" and "M" must be disjoint.
      inverse.resize(x + 1);
      for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i);
    }
    if (x < inverse.size()) return inverse[x];
    unsigned int a = x, b = M; int u = 1, v = 0;
    while (b) {
      unsigned int q = a / b;
      std::swap(a -= q * b, b);
      std::swap(u -= q * v, v);
    }
    return u;
  }
  static MInt fact(int x) {
    static std::vector<MInt> f{1};
    int prev = f.size();
    if (x >= prev) {
      f.resize(x + 1);
      for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i;
    }
    return f[x];
  }
  static MInt fact_inv(int x) {
    static std::vector<MInt> finv{1};
    int prev = finv.size();
    if (x >= prev) {
      finv.resize(x + 1);
      finv[x] = inv(fact(x).val);
      for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i;
    }
    return finv[x];
  }
  static MInt nCk(int n, int k) {
    if (n < 0 || n < k || k < 0) return 0;
    if (n - k > k) k = n - k;
    return fact(n) * fact_inv(k) * fact_inv(n - k);
  }
  static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); }
  static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); }
  static MInt large_nCk(long long n, int k) {
    if (n < 0 || n < k || k < 0) return 0;
    inv(k, true);
    MInt res = 1;
    for (int i = 1; i <= k; ++i) res *= inv(i) * n--;
    return res;
  }
  MInt pow(long long exponent) const {
    MInt tmp = *this, res = 1;
    while (exponent > 0) {
      if (exponent & 1) res *= tmp;
      tmp *= tmp;
      exponent >>= 1;
    }
    return res;
  }
  MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; }
  MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; }
  MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; }
  MInt &operator/=(const MInt &x) { return *this *= inv(x.val); }
  bool operator==(const MInt &x) const { return val == x.val; }
  bool operator!=(const MInt &x) const { return val != x.val; }
  bool operator<(const MInt &x) const { return val < x.val; }
  bool operator<=(const MInt &x) const { return val <= x.val; }
  bool operator>(const MInt &x) const { return val > x.val; }
  bool operator>=(const MInt &x) const { return val >= x.val; }
  MInt &operator++() { if (++val == M) val = 0; return *this; }
  MInt operator++(int) { MInt res = *this; ++*this; return res; }
  MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; }
  MInt operator--(int) { MInt res = *this; --*this; return res; }
  MInt operator+() const { return *this; }
  MInt operator-() const { return MInt(val ? M - val : 0); }
  MInt operator+(const MInt &x) const { return MInt(*this) += x; }
  MInt operator-(const MInt &x) const { return MInt(*this) -= x; }
  MInt operator*(const MInt &x) const { return MInt(*this) *= x; }
  MInt operator/(const MInt &x) const { return MInt(*this) /= x; }
  friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; }
  friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; }
};
namespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } }
using ModInt = MInt<MOD>;

template <typename Abelian>
struct FenwickTree {
  FenwickTree(int n, const Abelian ID = 0) : n(n), ID(ID), dat(n, ID) {}

  void add(int idx, Abelian val) {
    while (idx < n) {
      dat[idx] += val;
      idx |= idx + 1;
    }
  }

  Abelian sum(int idx) const {
    Abelian res = ID;
    --idx;
    while (idx >= 0) {
      res += dat[idx];
      idx = (idx & (idx + 1)) - 1;
    }
    return res;
  }

  Abelian sum(int left, int right) const {
    return left < right ? sum(right) - sum(left) : ID;
  }

  Abelian operator[](const int idx) const { return sum(idx, idx + 1); }

  int lower_bound(Abelian val) const {
    if (val <= ID) return 0;
    int res = 0, exponent = 1;
    while (exponent <= n) exponent <<= 1;
    for (int mask = exponent >> 1; mask > 0; mask >>= 1) {
      if (res + mask - 1 < n && dat[res + mask - 1] < val) {
        val -= dat[res + mask - 1];
        res += mask;
      }
    }
    return res;
  }

private:
  int n;
  const Abelian ID;
  std::vector<Abelian> dat;
};

ModInt solve(vector<int> x) {
  const int n = x.size();
  sort(ALL(x));
  ModInt ans = 0;
  REP(i, n) ans += ModInt(x[i]) * x[i] * (n - 1);
  ModInt sum = accumulate(ALL(x), ModInt(0));
  REP(i, n) {
    sum -= x[i];
    ans -= sum * x[i] * 2;
  }
  return ans;
}

int main() {
  int n; cin >> n;
  vector<int> x(n), y(n); REP(i, n) cin >> x[i] >> y[i];
  vector<int> ord(n);
  iota(ALL(ord), 0);
  sort(ALL(ord), [&](int a, int b) -> bool {
    return x[a] != x[b] ? x[a] < x[b] : y[a] < y[b];
  });
  vector<int> ys = y;
  sort(ALL(ys));
  ys.erase(unique(ALL(ys)), ys.end());
  const int r = ys.size();
  REP(i, n) y[i] = lower_bound(ALL(ys), y[i]) - ys.begin();
  FenwickTree<ModInt> sum_x(r), sum_y(r);
  FenwickTree<int> cnt(r);
  REP(i, n) {
    sum_x.add(y[i], x[i]);
    sum_y.add(y[i], ys[y[i]]);
    cnt.add(y[i], 1);
  }
  ModInt ans = 0;
  for (int i : ord) {
    sum_x.add(y[i], -x[i]);
    sum_y.add(y[i], -ys[y[i]]);
    cnt.add(y[i], -1);
    ans += ModInt(cnt.sum(y[i], r) - cnt.sum(0, y[i])) * x[i] * ys[y[i]];
    ans -= (sum_y.sum(y[i], r) - sum_y.sum(0, y[i])) * x[i];
    ans -= (sum_x.sum(y[i], r) - sum_x.sum(0, y[i])) * ys[y[i]];
  }
  REP(i, n) cnt.add(y[i], 1);
  reverse(ALL(ord));
  for (int i : ord) {
    cnt.add(y[i], -1);
    ans += ModInt(cnt.sum(0, y[i] + 1) - cnt.sum(y[i] + 1, r)) * x[i] * ys[y[i]];
  }
  REP(i, n) y[i] = ys[y[i]];
  cout << ans * 2 + solve(x) + solve(y) << '\n';
  return 0;
}
0