結果
問題 | No.1649 Manhattan Square |
ユーザー | 👑 emthrm |
提出日時 | 2021-08-13 22:57:13 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 250 ms / 3,000 ms |
コード長 | 7,141 bytes |
コンパイル時間 | 2,396 ms |
コンパイル使用メモリ | 213,236 KB |
最終ジャッジ日時 | 2025-01-23 20:46:36 |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 43 |
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template <int M> struct MInt { unsigned int val; MInt(): val(0) {} MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {} static constexpr int get_mod() { return M; } static void set_mod(int divisor) { assert(divisor == M); } static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); } static MInt inv(int x, bool init = false) { // assert(0 <= x && x < M && std::__gcd(x, M) == 1); static std::vector<MInt> inverse{0, 1}; int prev = inverse.size(); if (init && x >= prev) { // "x!" and "M" must be disjoint. inverse.resize(x + 1); for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i); } if (x < inverse.size()) return inverse[x]; unsigned int a = x, b = M; int u = 1, v = 0; while (b) { unsigned int q = a / b; std::swap(a -= q * b, b); std::swap(u -= q * v, v); } return u; } static MInt fact(int x) { static std::vector<MInt> f{1}; int prev = f.size(); if (x >= prev) { f.resize(x + 1); for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i; } return f[x]; } static MInt fact_inv(int x) { static std::vector<MInt> finv{1}; int prev = finv.size(); if (x >= prev) { finv.resize(x + 1); finv[x] = inv(fact(x).val); for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i; } return finv[x]; } static MInt nCk(int n, int k) { if (n < 0 || n < k || k < 0) return 0; if (n - k > k) k = n - k; return fact(n) * fact_inv(k) * fact_inv(n - k); } static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); } static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); } static MInt large_nCk(long long n, int k) { if (n < 0 || n < k || k < 0) return 0; inv(k, true); MInt res = 1; for (int i = 1; i <= k; ++i) res *= inv(i) * n--; return res; } MInt pow(long long exponent) const { MInt tmp = *this, res = 1; while (exponent > 0) { if (exponent & 1) res *= tmp; tmp *= tmp; exponent >>= 1; } return res; } MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; } MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; } MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; } MInt &operator/=(const MInt &x) { return *this *= inv(x.val); } bool operator==(const MInt &x) const { return val == x.val; } bool operator!=(const MInt &x) const { return val != x.val; } bool operator<(const MInt &x) const { return val < x.val; } bool operator<=(const MInt &x) const { return val <= x.val; } bool operator>(const MInt &x) const { return val > x.val; } bool operator>=(const MInt &x) const { return val >= x.val; } MInt &operator++() { if (++val == M) val = 0; return *this; } MInt operator++(int) { MInt res = *this; ++*this; return res; } MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; } MInt operator--(int) { MInt res = *this; --*this; return res; } MInt operator+() const { return *this; } MInt operator-() const { return MInt(val ? M - val : 0); } MInt operator+(const MInt &x) const { return MInt(*this) += x; } MInt operator-(const MInt &x) const { return MInt(*this) -= x; } MInt operator*(const MInt &x) const { return MInt(*this) *= x; } MInt operator/(const MInt &x) const { return MInt(*this) /= x; } friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; } friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; } }; namespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } } using ModInt = MInt<MOD>; template <typename Abelian> struct FenwickTree { FenwickTree(int n, const Abelian ID = 0) : n(n), ID(ID), dat(n, ID) {} void add(int idx, Abelian val) { while (idx < n) { dat[idx] += val; idx |= idx + 1; } } Abelian sum(int idx) const { Abelian res = ID; --idx; while (idx >= 0) { res += dat[idx]; idx = (idx & (idx + 1)) - 1; } return res; } Abelian sum(int left, int right) const { return left < right ? sum(right) - sum(left) : ID; } Abelian operator[](const int idx) const { return sum(idx, idx + 1); } int lower_bound(Abelian val) const { if (val <= ID) return 0; int res = 0, exponent = 1; while (exponent <= n) exponent <<= 1; for (int mask = exponent >> 1; mask > 0; mask >>= 1) { if (res + mask - 1 < n && dat[res + mask - 1] < val) { val -= dat[res + mask - 1]; res += mask; } } return res; } private: int n; const Abelian ID; std::vector<Abelian> dat; }; ModInt solve(vector<int> x) { const int n = x.size(); sort(ALL(x)); ModInt ans = 0; REP(i, n) ans += ModInt(x[i]) * x[i] * (n - 1); ModInt sum = accumulate(ALL(x), ModInt(0)); REP(i, n) { sum -= x[i]; ans -= sum * x[i] * 2; } return ans; } int main() { int n; cin >> n; vector<int> x(n), y(n); REP(i, n) cin >> x[i] >> y[i]; vector<int> ord(n); iota(ALL(ord), 0); sort(ALL(ord), [&](int a, int b) -> bool { return x[a] != x[b] ? x[a] < x[b] : y[a] < y[b]; }); vector<int> ys = y; sort(ALL(ys)); ys.erase(unique(ALL(ys)), ys.end()); const int r = ys.size(); REP(i, n) y[i] = lower_bound(ALL(ys), y[i]) - ys.begin(); FenwickTree<ModInt> sum_x(r), sum_y(r); FenwickTree<int> cnt(r); REP(i, n) { sum_x.add(y[i], x[i]); sum_y.add(y[i], ys[y[i]]); cnt.add(y[i], 1); } ModInt ans = 0; for (int i : ord) { sum_x.add(y[i], -x[i]); sum_y.add(y[i], -ys[y[i]]); cnt.add(y[i], -1); ans += ModInt(cnt.sum(y[i], r) - cnt.sum(0, y[i])) * x[i] * ys[y[i]]; ans -= (sum_y.sum(y[i], r) - sum_y.sum(0, y[i])) * x[i]; ans -= (sum_x.sum(y[i], r) - sum_x.sum(0, y[i])) * ys[y[i]]; } REP(i, n) cnt.add(y[i], 1); reverse(ALL(ord)); for (int i : ord) { cnt.add(y[i], -1); ans += ModInt(cnt.sum(0, y[i] + 1) - cnt.sum(y[i] + 1, r)) * x[i] * ys[y[i]]; } REP(i, n) y[i] = ys[y[i]]; cout << ans * 2 + solve(x) + solve(y) << '\n'; return 0; }