結果

問題 No.660 家を通り過ぎないランダムウォーク問題
ユーザー vwxyzvwxyz
提出日時 2021-08-14 11:56:39
言語 PyPy3
(7.3.15)
結果
RE  
実行時間 -
コード長 2,681 bytes
コンパイル時間 187 ms
コンパイル使用メモリ 82,112 KB
実行使用メモリ 120,156 KB
最終ジャッジ日時 2024-10-05 02:27:08
合計ジャッジ時間 9,817 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 161 ms
114,072 KB
testcase_01 AC 165 ms
114,104 KB
testcase_02 AC 165 ms
113,880 KB
testcase_03 AC 167 ms
113,932 KB
testcase_04 AC 168 ms
113,884 KB
testcase_05 AC 172 ms
114,060 KB
testcase_06 AC 164 ms
114,160 KB
testcase_07 AC 165 ms
113,868 KB
testcase_08 AC 162 ms
113,872 KB
testcase_09 AC 162 ms
114,016 KB
testcase_10 AC 167 ms
114,004 KB
testcase_11 AC 162 ms
114,172 KB
testcase_12 AC 163 ms
114,016 KB
testcase_13 AC 165 ms
113,872 KB
testcase_14 AC 162 ms
113,984 KB
testcase_15 AC 161 ms
113,868 KB
testcase_16 AC 163 ms
113,920 KB
testcase_17 AC 163 ms
114,020 KB
testcase_18 AC 164 ms
114,036 KB
testcase_19 AC 164 ms
113,884 KB
testcase_20 AC 170 ms
113,952 KB
testcase_21 AC 171 ms
114,052 KB
testcase_22 AC 180 ms
114,068 KB
testcase_23 AC 180 ms
114,024 KB
testcase_24 AC 169 ms
114,012 KB
testcase_25 AC 166 ms
114,072 KB
testcase_26 AC 171 ms
114,044 KB
testcase_27 AC 169 ms
113,972 KB
testcase_28 AC 166 ms
113,888 KB
testcase_29 AC 174 ms
114,528 KB
testcase_30 AC 175 ms
114,248 KB
testcase_31 AC 185 ms
114,376 KB
testcase_32 AC 178 ms
114,596 KB
testcase_33 AC 178 ms
114,360 KB
testcase_34 AC 175 ms
114,388 KB
testcase_35 AC 179 ms
114,492 KB
testcase_36 AC 190 ms
114,320 KB
testcase_37 AC 194 ms
114,532 KB
testcase_38 AC 213 ms
120,156 KB
testcase_39 AC 210 ms
119,868 KB
testcase_40 AC 261 ms
120,036 KB
testcase_41 RE -
testcase_42 RE -
testcase_43 RE -
testcase_44 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

import bisect
import copy
import decimal
import fractions
import functools
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
    heap.append(item)
    heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
    if heap and item < heap[0]:
        item, heap[0] = heap[0], item
        heapq._siftup_max(heap, 0)
    return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines

def Extended_Euclid(n,m):
    stack=[]
    while m:
        stack.append((n,m))
        n,m=m,n%m
    if n>=0:
        x,y=1,0
    else:
        x,y=-1,0
    for i in range(len(stack)-1,-1,-1):
        n,m=stack[i]
        x,y=y,x-(n//m)*y
    return x,y

class MOD:
    def __init__(self,p,e=1):
        self.p=p
        self.e=e
        self.mod=self.p**self.e

    def Pow(self,a,n):
        a%=self.mod
        if n>=0:
            return pow(a,n,self.mod)
        else:
            assert math.gcd(a,self.mod)==1
            x=Extended_Euclid(a,self.mod)[0]
            return pow(x,-n,self.mod)

    def Build_Fact(self,N):
        assert N>=0
        self.factorial=[1]
        self.cnt=[0]*(N+1)
        for i in range(1,N+1):
            ii=i
            self.cnt[i]=self.cnt[i-1]
            while ii%self.p==0:
                ii//=self.p
                self.cnt[i]+=1
            self.factorial.append((self.factorial[-1]*ii)%self.mod)
        self.factorial_inv=[None]*(N+1)
        self.factorial_inv[-1]=self.Pow(self.factorial[-1],-1)
        for i in range(N-1,-1,-1):
            ii=i+1
            while ii%self.p==0:
                ii//=self.p
            self.factorial_inv[i]=(self.factorial_inv[i+1]*ii)%self.mod

    def Fact(self,N):
        return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.mod

    def Fact_Inv(self,N):
        if self.cnt[N]:
            return None
        return self.factorial_inv[N]

    def Comb(self,N,K,divisible_count=False):
        if K<0 or K>N:
            return 0
        retu=self.factorial[N]*self.factorial_inv[K]*self.factorial_inv[N-K]%self.mod
        cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
        if divisible_count:
            return retu,cnt
        else:
            retu*=pow(self.p,cnt,self.mod)
            retu%=self.mod
            return retu

N=int(readline())
ans=0
mod=10**9+7
MD=MOD(mod)
MD.Build_Fact(3*10**5)
for i in range(0,N//2+1):
    ans+=MD.Comb(N+i*2-1,i)-MD.Comb(N+i*2-1,i-1)
    ans%=mod
print(ans)
0