結果
問題 | No.660 家を通り過ぎないランダムウォーク問題 |
ユーザー | vwxyz |
提出日時 | 2021-08-14 12:03:58 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 624 ms / 2,000 ms |
コード長 | 2,681 bytes |
コンパイル時間 | 276 ms |
コンパイル使用メモリ | 12,928 KB |
実行使用メモリ | 55,296 KB |
最終ジャッジ日時 | 2024-10-05 02:44:32 |
合計ジャッジ時間 | 22,748 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 420 ms
55,168 KB |
testcase_01 | AC | 421 ms
55,040 KB |
testcase_02 | AC | 418 ms
54,972 KB |
testcase_03 | AC | 424 ms
55,168 KB |
testcase_04 | AC | 424 ms
55,168 KB |
testcase_05 | AC | 421 ms
55,092 KB |
testcase_06 | AC | 423 ms
55,148 KB |
testcase_07 | AC | 419 ms
55,296 KB |
testcase_08 | AC | 435 ms
55,296 KB |
testcase_09 | AC | 425 ms
55,168 KB |
testcase_10 | AC | 420 ms
55,040 KB |
testcase_11 | AC | 431 ms
55,168 KB |
testcase_12 | AC | 423 ms
55,168 KB |
testcase_13 | AC | 423 ms
55,040 KB |
testcase_14 | AC | 416 ms
55,040 KB |
testcase_15 | AC | 416 ms
55,040 KB |
testcase_16 | AC | 430 ms
55,040 KB |
testcase_17 | AC | 427 ms
55,160 KB |
testcase_18 | AC | 422 ms
55,156 KB |
testcase_19 | AC | 439 ms
55,112 KB |
testcase_20 | AC | 422 ms
55,168 KB |
testcase_21 | AC | 416 ms
55,148 KB |
testcase_22 | AC | 432 ms
55,100 KB |
testcase_23 | AC | 424 ms
55,044 KB |
testcase_24 | AC | 423 ms
55,168 KB |
testcase_25 | AC | 421 ms
55,084 KB |
testcase_26 | AC | 428 ms
55,040 KB |
testcase_27 | AC | 428 ms
54,976 KB |
testcase_28 | AC | 425 ms
55,088 KB |
testcase_29 | AC | 440 ms
55,040 KB |
testcase_30 | AC | 436 ms
55,268 KB |
testcase_31 | AC | 442 ms
55,152 KB |
testcase_32 | AC | 427 ms
55,040 KB |
testcase_33 | AC | 429 ms
55,088 KB |
testcase_34 | AC | 442 ms
55,000 KB |
testcase_35 | AC | 452 ms
55,168 KB |
testcase_36 | AC | 456 ms
55,156 KB |
testcase_37 | AC | 453 ms
55,296 KB |
testcase_38 | AC | 512 ms
55,040 KB |
testcase_39 | AC | 510 ms
55,168 KB |
testcase_40 | AC | 514 ms
55,040 KB |
testcase_41 | AC | 568 ms
55,040 KB |
testcase_42 | AC | 572 ms
55,044 KB |
testcase_43 | AC | 599 ms
54,976 KB |
testcase_44 | AC | 624 ms
55,044 KB |
ソースコード
import bisect import copy import decimal import fractions import functools import heapq import itertools import math import random import sys from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines def Extended_Euclid(n,m): stack=[] while m: stack.append((n,m)) n,m=m,n%m if n>=0: x,y=1,0 else: x,y=-1,0 for i in range(len(stack)-1,-1,-1): n,m=stack[i] x,y=y,x-(n//m)*y return x,y class MOD: def __init__(self,p,e=1): self.p=p self.e=e self.mod=self.p**self.e def Pow(self,a,n): a%=self.mod if n>=0: return pow(a,n,self.mod) else: assert math.gcd(a,self.mod)==1 x=Extended_Euclid(a,self.mod)[0] return pow(x,-n,self.mod) def Build_Fact(self,N): assert N>=0 self.factorial=[1] self.cnt=[0]*(N+1) for i in range(1,N+1): ii=i self.cnt[i]=self.cnt[i-1] while ii%self.p==0: ii//=self.p self.cnt[i]+=1 self.factorial.append((self.factorial[-1]*ii)%self.mod) self.factorial_inv=[None]*(N+1) self.factorial_inv[-1]=self.Pow(self.factorial[-1],-1) for i in range(N-1,-1,-1): ii=i+1 while ii%self.p==0: ii//=self.p self.factorial_inv[i]=(self.factorial_inv[i+1]*ii)%self.mod def Fact(self,N): return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.mod def Fact_Inv(self,N): if self.cnt[N]: return None return self.factorial_inv[N] def Comb(self,N,K,divisible_count=False): if K<0 or K>N: return 0 retu=self.factorial[N]*self.factorial_inv[K]*self.factorial_inv[N-K]%self.mod cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K] if divisible_count: return retu,cnt else: retu*=pow(self.p,cnt,self.mod) retu%=self.mod return retu N=int(readline()) ans=0 mod=10**9+7 MD=MOD(mod) MD.Build_Fact(5*10**5) for i in range(0,N//2+1): ans+=MD.Comb(N+i*2-1,i)-MD.Comb(N+i*2-1,i-1) ans%=mod print(ans)