結果

問題 No.1425 Yet Another Cyclic Shifts Sorting
ユーザー sgswsgsw
提出日時 2021-08-15 00:13:13
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 6,317 bytes
コンパイル時間 402 ms
コンパイル使用メモリ 81,920 KB
実行使用メモリ 124,544 KB
最終ジャッジ日時 2024-10-06 03:52:37
合計ジャッジ時間 7,959 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 60 ms
66,944 KB
testcase_01 AC 65 ms
67,328 KB
testcase_02 AC 61 ms
67,200 KB
testcase_03 AC 61 ms
67,328 KB
testcase_04 WA -
testcase_05 AC 60 ms
67,456 KB
testcase_06 AC 60 ms
66,944 KB
testcase_07 AC 60 ms
67,200 KB
testcase_08 AC 59 ms
66,944 KB
testcase_09 AC 60 ms
66,944 KB
testcase_10 WA -
testcase_11 AC 59 ms
66,944 KB
testcase_12 AC 59 ms
67,200 KB
testcase_13 WA -
testcase_14 WA -
testcase_15 AC 59 ms
66,944 KB
testcase_16 AC 59 ms
67,200 KB
testcase_17 AC 61 ms
67,068 KB
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 AC 61 ms
66,944 KB
testcase_22 AC 136 ms
106,188 KB
testcase_23 AC 82 ms
83,328 KB
testcase_24 AC 82 ms
82,376 KB
testcase_25 AC 119 ms
109,316 KB
testcase_26 AC 125 ms
112,812 KB
testcase_27 AC 155 ms
117,844 KB
testcase_28 AC 187 ms
122,672 KB
testcase_29 AC 125 ms
87,016 KB
testcase_30 AC 118 ms
84,108 KB
testcase_31 AC 196 ms
122,576 KB
testcase_32 AC 111 ms
85,376 KB
testcase_33 AC 94 ms
78,332 KB
testcase_34 AC 119 ms
89,296 KB
testcase_35 AC 188 ms
119,500 KB
testcase_36 AC 204 ms
109,560 KB
testcase_37 AC 119 ms
81,424 KB
testcase_38 AC 254 ms
124,344 KB
testcase_39 AC 103 ms
78,884 KB
testcase_40 AC 219 ms
116,052 KB
testcase_41 AC 143 ms
87,344 KB
testcase_42 AC 158 ms
90,860 KB
testcase_43 AC 107 ms
78,720 KB
testcase_44 AC 117 ms
80,656 KB
testcase_45 AC 251 ms
124,492 KB
testcase_46 AC 250 ms
123,824 KB
testcase_47 AC 255 ms
124,544 KB
testcase_48 AC 252 ms
124,020 KB
testcase_49 AC 248 ms
124,288 KB
testcase_50 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

import types

_atcoder_code = """
# Python port of AtCoder Library.
__all__ = ["string","lazysegtree","convolution","maxflow","modint"
    ,"mincostflow","segtree","_scc","_math","math","dsu","twosat","fenwicktree","scc","_bit","lca","unverified","graph","matrix","algebra","combinatorics"]
__version__ = '0.0.1'
"""

atcoder = types.ModuleType('atcoder')
exec(_atcoder_code, atcoder.__dict__)

_atcoder__bit_code = """
def _ceil_pow2(n: int) -> int:
    x = 0
    while (1 << x) < n:
        x += 1

    return x


def _bsf(n: int) -> int:
    x = 0
    while n % 2 == 0:
        x += 1
        n //= 2

    return x
"""

atcoder._bit = types.ModuleType('atcoder._bit')
exec(_atcoder__bit_code, atcoder._bit.__dict__)


_atcoder_segtree_code = """
import typing

# import atcoder._bit


class SegTree:
 
    '''
    Segment Tree Library.
    op(S,S) -> S
    e = Identity element
    
    SegTree(op,e,n) := Initialized by [e]*(n)
    SegTree(op,e,vector) := Initialized by vector
    '''

    def __init__(self,
                 op: typing.Callable[[typing.Any, typing.Any], typing.Any],
                 e: typing.Any,
                 v: typing.Union[int, typing.List[typing.Any]]) -> None:
        self._op = op
        self._e = e

        if isinstance(v, int):
            v = [e] * v

        self._n = len(v)
        self._log = atcoder._bit._ceil_pow2(self._n)
        self._size = 1 << self._log
        self._d = [e] * (2 * self._size)

        for i in range(self._n):
            self._d[self._size + i] = v[i]
        for i in range(self._size - 1, 0, -1):
            self._update(i)

    def set(self, p: int, x: typing.Any) -> None:
        '''
        a[p] -> x in O(logN).
        '''
        assert 0 <= p < self._n

        p += self._size
        self._d[p] = x
        for i in range(1, self._log + 1):
            self._update(p >> i)

    def increment(self, p: int, x : typing.Any) -> None:
        '''
        a[p] -> a[p] + x in O(logN).
        '''
        assert 0 <= p < self._n

        p += self._size
        self._d[p] += x
        for i in range(1,self._log + 1):
            self._update(p >> i)
        
    def get(self, p: int) -> typing.Any:
        '''
        return a[p] in O(1).
        '''
        assert 0 <= p < self._n

        return self._d[p + self._size]

    def prod(self, left: int, right: int) -> typing.Any:
        '''
        return op(a[l...r)) in O(logN).
        '''
        assert 0 <= left <= right <= self._n
        sml = self._e
        smr = self._e
        left += self._size
        right += self._size

        while left < right:
            if left & 1:
                sml = self._op(sml, self._d[left])
                left += 1
            if right & 1:
                right -= 1
                smr = self._op(self._d[right], smr)
            left >>= 1
            right >>= 1

        return self._op(sml, smr)

    def all_prod(self) -> typing.Any:
        return self._d[1]

    def max_right(self, left: int,
                  f: typing.Callable[[typing.Any], bool]) -> int:
        '''
        let f(S) -> bool and l is const.
        return maximum r for which f(op[l...r)) == true is satisfied, in O(logN).
        '''
        assert 0 <= left <= self._n
        # assert f(self._e)

        if left == self._n:
            return self._n

        left += self._size
        sm = self._e

        first = True
        while first or (left & -left) != left:
            first = False
            while left % 2 == 0:
                left >>= 1
            if not f(self._op(sm, self._d[left])):
                while left < self._size:
                    left *= 2
                    if f(self._op(sm, self._d[left])):
                        sm = self._op(sm, self._d[left])
                        left += 1
                return left - self._size
            sm = self._op(sm, self._d[left])
            left += 1

        return self._n

    def min_left(self, right: int,
                 f: typing.Callable[[typing.Any], bool]) -> int:
        '''
        let f(S) -> bool and r is const.
        return minimum l for which f(op[l...r)) == true is satisfied, in O(logN).
        '''

        assert 0 <= right <= self._n
        # assert f(self._e)

        if right == 0:
            return 0

        right += self._size
        sm = self._e

        first = True
        while first or (right & -right) != right:
            first = False
            right -= 1
            while right > 1 and right % 2:
                right >>= 1
            if not f(self._op(self._d[right], sm)):
                while right < self._size:
                    right = 2 * right + 1
                    if f(self._op(self._d[right], sm)):
                        sm = self._op(self._d[right], sm)
                        right -= 1
                return right + 1 - self._size
            sm = self._op(self._d[right], sm)

        return 0

    def _update(self, k: int) -> None:
        self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1])
"""

atcoder.segtree = types.ModuleType('atcoder.segtree')
atcoder.segtree.__dict__['atcoder'] = atcoder
atcoder.segtree.__dict__['atcoder._bit'] = atcoder._bit
exec(_atcoder_segtree_code, atcoder.segtree.__dict__)
SegTree = atcoder.segtree.SegTree

'''
    Python3(PyPy3) Template for Programming-Contest.

    author : sgsw

    generated : 2021/08/14   
    when : 23:49:30

'''

import sys


def input():
    return sys.stdin.readline().rstrip()


DXY = [(0, -1), (1, 0), (0, 1), (-1, 0)]  # LDRU
mod = 998244353
inf = 1 << 64

# from atcoder.segtree import SegTree


def main():
    n = int(input())
    a = list(map(int,input().split()))
    seg = SegTree(lambda x,y : max(x,y),-10**18,a)
    if sorted(a) == a:
        print(0)
    else:
        #case 1
        cnt = 0
        is_sorted = [True]*(n)
        for i in reversed(range(0,n)):
            if i == n - 1:
                is_sorted[i] = True 
            else:
                is_sorted[i - 1] = is_sorted[i] & (a[i - 1] <= a[i])
        for l in range(2,n):
            cnt += not (a[l - 2] <= a[l - 1])
            lval = seg.prod(0,l)
            if lval <= a[l] and cnt == 1 and is_sorted[l]:
                print(1)
                return
        print(2)
    return 0


if __name__ == "__main__":
    main()
0