結果
問題 | No.470 Inverse S+T Problem |
ユーザー |
|
提出日時 | 2021-08-15 06:46:51 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 4,485 bytes |
コンパイル時間 | 2,424 ms |
コンパイル使用メモリ | 186,336 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-12-22 14:06:53 |
合計ジャッジ時間 | 4,090 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 27 |
ソースコード
#include <bits/stdc++.h> #define rep(i,n) for(int i = 0; i < (n); i++) using namespace std; typedef long long ll; struct scc_graph { int _n; struct edge { int to; }; vector<pair<int,edge>> edges; template < class E > struct csr { vector<int> start; vector< E > elist; csr(int n, const vector<pair<int,E>> &edges) : start(n + 1), elist(edges.size()) { for(auto e : edges) start[e.first + 1]++; for(int i = 1; i <= n; i++) start[i] += start[i - 1]; auto counter = start; for(auto e : edges) elist[counter[e.first]++] = e.second; } }; scc_graph(int n) : _n(n) {} scc_graph() : _n(0) {} int num_vertices() { return _n; } void add_edge(int from, int to) { int n = num_vertices(); assert(0 <= from && from < n); assert(0 <= to && to < n); edges.push_back({from, {to}}); } // return pair of (# of scc, scc id) pair<int, vector<int>> scc_ids() { auto g = csr<edge>(_n, edges); int now_ord = 0, group_num = 0; vector<int> visited, low(_n), ord(_n, -1), ids(_n); visited.reserve(_n); auto dfs = [&](auto self, int v) -> void { low[v] = ord[v] = now_ord++; visited.push_back(v); for(int i = g.start[v]; i < g.start[v + 1]; i++){ auto to = g.elist[i].to; if(ord[to] == -1){ self(self, to); low[v] = min(low[v], low[to]); }else{ low[v] = min(low[v], ord[to]); } } if(low[v] == ord[v]){ while(true){ int u = visited.back(); visited.pop_back(); ord[u] = _n; ids[u] = group_num; if(u == v) break; } group_num++; } }; for(int i = 0; i < _n; i++) if(ord[i] == -1) dfs(dfs, i); for(auto &x : ids) x = group_num - 1 - x; return {group_num, ids}; } vector<vector<int>> scc() { auto ids = scc_ids(); int group_num = ids.first; vector<int> counts(group_num); for(auto x : ids.second) counts[x]++; vector<vector<int>> groups(ids.first); for(int i = 0; i < group_num; i++) groups[i].reserve(counts[i]); for(int i = 0; i < _n; i++) groups[ids.second[i]].push_back(i); return groups; } }; struct two_sat { public: two_sat() : _n(0), scc(0) {} two_sat(int n) : _n(n), _answer(n), scc(2 * n) {} void add_clause(int i, bool f, int j, bool g) { assert(0 <= i && i < _n); assert(0 <= j && j < _n); scc.add_edge(2 * i + (f ? 0 : 1), 2 * j + (g ? 1 : 0)); scc.add_edge(2 * j + (g ? 0 : 1), 2 * i + (f ? 1 : 0)); } bool satisfiable() { auto id = scc.scc_ids().second; for(int i = 0; i < _n; i++){ if(id[2 * i] == id[2 * i + 1]) return false; _answer[i] = id[2 * i] < id[2 * i + 1]; } return true; } vector<bool> answer() { return _answer; } private: int _n; vector<bool> _answer; scc_graph scc; }; int main(){ cin.tie(0); ios::sync_with_stdio(0); int N; cin >> N; if(N >= 53){ cout << "Impossible" << endl; return 0; } vector<string> U(N); rep(i,N) cin >> U[i]; two_sat ts(N); rep(i,N)rep(j,i){ if(U[i][0] == U[j][0] || U[i].substr(1) == U[j].substr(1)){ ts.add_clause(i, false, j, false); } if(U[i][0] == U[j][2] || U[i].substr(1) == U[j].substr(0, 2)){ ts.add_clause(i, false, j, true); } if(U[i][2] == U[j][0] || U[i].substr(0, 2) == U[j].substr(1)){ ts.add_clause(i, true, j, false); } if(U[i][2] == U[j][2] || U[i].substr(0, 2) == U[j].substr(0, 2)){ ts.add_clause(i, true, j, true); } } if(!ts.satisfiable()){ cout << "Impossible" << endl; }else{ auto ans = ts.answer(); rep(i,N){ cout << U[i][0]; if(ans[i]){ cout << " " << U[i][1]; }else{ cout << U[i][1] << " "; } cout << U[i][2] << endl; } } }