結果
| 問題 |
No.575 n! / m / m / m...
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2021-08-17 03:16:09 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
AC
|
| 実行時間 | 364 ms / 2,000 ms |
| コード長 | 3,826 bytes |
| コンパイル時間 | 327 ms |
| コンパイル使用メモリ | 13,056 KB |
| 実行使用メモリ | 25,600 KB |
| 最終ジャッジ日時 | 2024-10-10 01:51:57 |
| 合計ジャッジ時間 | 7,537 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 23 |
ソースコード
import bisect
import copy
import decimal
import fractions
import functools
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
if heap and item < heap[0]:
item, heap[0] = heap[0], item
heapq._siftup_max(heap, 0)
return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
class Prime:
def __init__(self,N):
assert N<=10**8
self.smallest_prime_factor=[None]*(N+1)
for i in range(2,N+1,2):
self.smallest_prime_factor[i]=2
n=int(N**.5)+1
for p in range(3,n,2):
if self.smallest_prime_factor[p]==None:
self.smallest_prime_factor[p]=p
for i in range(p**2,N+1,2*p):
if self.smallest_prime_factor[i]==None:
self.smallest_prime_factor[i]=p
for p in range(n,N+1):
if self.smallest_prime_factor[p]==None:
self.smallest_prime_factor[p]=p
self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]
def Factorize(self,N):
assert N>=1
factorize=defaultdict(int)
if N<=len(self.smallest_prime_factor)-1:
while N!=1:
factorize[self.smallest_prime_factor[N]]+=1
N//=self.smallest_prime_factor[N]
else:
for p in self.primes:
while N%p==0:
N//=p
factorize[p]+=1
if N<p*p:
if N!=1:
factorize[N]+=1
break
if N<=len(self.smallest_prime_factor)-1:
while N!=1:
factorize[self.smallest_prime_factor[N]]+=1
N//=self.smallest_prime_factor[N]
break
else:
if N!=1:
factorize[N]+=1
return factorize
def Divisors(self,N):
assert N>0
divisors=[1]
for p,e in self.Factorize(N).items():
A=[1]
for _ in range(e):
A.append(A[-1]*p)
divisors=[i*j for i in divisors for j in A]
return divisors
def Is_Prime(self,N):
return N==self.smallest_prime_factor[N]
def Totient(self,N):
for p in self.Factorize(N).keys():
N*=p-1
N//=p
return N
def Mebius(self,N):
fact=self.Factorize(N)
for e in fact.values():
if e>=2:
return 0
else:
if len(fact)%2==0:
return 1
else:
return -1
N,M=map(int,readline().split())
if N<=1000:
ans=1
for i in range(1,N+1):
ans*=i
while ans%M==0:
ans//=M
d=len(str(ans))-1
p=ans/pow(10,d)
else:
ans_log=N*(math.log10(N)-math.log10(math.e))+math.log10(2*math.pi*N)/2
P=Prime(10**6)
cnt=1<<60
MM=M
for p in P.primes:
if M%p==0:
cnt_M=0
while MM%p==0:
cnt_M+=1
MM//=p
NN=N
cnt_N=0
while NN:
NN//=p
cnt_N+=NN
cnt=min(cnt,cnt_N//cnt_M)
if MM!=1:
p=MM
cnt_M=1
NN=N
cnt_N=0
while NN:
NN//=p
cnt_N+=NN
cnt=min(cnt,cnt_N//cnt_M)
ans_log-=math.log10(M)*cnt
d=int(ans_log)
p=ans_log-d
p=10**p
print(p,"e",d,sep="")
vwxyz