結果
問題 | No.575 n! / m / m / m... |
ユーザー | vwxyz |
提出日時 | 2021-08-17 03:37:22 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,823 bytes |
コンパイル時間 | 216 ms |
コンパイル使用メモリ | 13,312 KB |
実行使用メモリ | 25,780 KB |
最終ジャッジ日時 | 2024-10-10 01:53:16 |
合計ジャッジ時間 | 9,962 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | AC | 306 ms
25,428 KB |
testcase_02 | AC | 303 ms
25,488 KB |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | AC | 302 ms
25,556 KB |
testcase_06 | AC | 40 ms
12,160 KB |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | AC | 41 ms
12,160 KB |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | AC | 297 ms
25,700 KB |
testcase_13 | AC | 304 ms
25,540 KB |
testcase_14 | AC | 311 ms
25,608 KB |
testcase_15 | AC | 314 ms
25,644 KB |
testcase_16 | AC | 308 ms
25,600 KB |
testcase_17 | AC | 309 ms
25,560 KB |
testcase_18 | AC | 341 ms
25,428 KB |
testcase_19 | AC | 304 ms
25,608 KB |
testcase_20 | AC | 304 ms
25,620 KB |
testcase_21 | AC | 306 ms
25,560 KB |
testcase_22 | AC | 301 ms
25,760 KB |
testcase_23 | AC | 304 ms
25,492 KB |
testcase_24 | AC | 308 ms
25,564 KB |
testcase_25 | AC | 313 ms
25,548 KB |
ソースコード
import bisect import copy import decimal import fractions import functools import heapq import itertools import math import random import sys from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines class Prime: def __init__(self,N): assert N<=10**8 self.smallest_prime_factor=[None]*(N+1) for i in range(2,N+1,2): self.smallest_prime_factor[i]=2 n=int(N**.5)+1 for p in range(3,n,2): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p for i in range(p**2,N+1,2*p): if self.smallest_prime_factor[i]==None: self.smallest_prime_factor[i]=p for p in range(n,N+1): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]] def Factorize(self,N): assert N>=1 factorize=defaultdict(int) if N<=len(self.smallest_prime_factor)-1: while N!=1: factorize[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] else: for p in self.primes: while N%p==0: N//=p factorize[p]+=1 if N<p*p: if N!=1: factorize[N]+=1 break if N<=len(self.smallest_prime_factor)-1: while N!=1: factorize[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] break else: if N!=1: factorize[N]+=1 return factorize def Divisors(self,N): assert N>0 divisors=[1] for p,e in self.Factorize(N).items(): A=[1] for _ in range(e): A.append(A[-1]*p) divisors=[i*j for i in divisors for j in A] return divisors def Is_Prime(self,N): return N==self.smallest_prime_factor[N] def Totient(self,N): for p in self.Factorize(N).keys(): N*=p-1 N//=p return N def Mebius(self,N): fact=self.Factorize(N) for e in fact.values(): if e>=2: return 0 else: if len(fact)%2==0: return 1 else: return -1 N,M=map(int,readline().split()) if N<=1: ans=1 for i in range(1,N+1): ans*=i while ans%M==0: ans//=M d=len(str(ans))-1 p=ans/pow(10,d) else: ans_log=N*(math.log10(N)-math.log10(math.e))+math.log10(2*math.pi*N)/2 P=Prime(10**6) cnt=1<<60 MM=M for p in P.primes: if M%p==0: cnt_M=0 while MM%p==0: cnt_M+=1 MM//=p NN=N cnt_N=0 while NN: NN//=p cnt_N+=NN cnt=min(cnt,cnt_N//cnt_M) if MM!=1: p=MM cnt_M=1 NN=N cnt_N=0 while NN: NN//=p cnt_N+=NN cnt=min(cnt,cnt_N//cnt_M) ans_log-=math.log10(M)*cnt d=int(ans_log) p=ans_log-d p=10**p print(p,"e",d,sep="")