結果
| 問題 |
No.1649 Manhattan Square
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-08-17 17:57:34 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 848 ms / 3,000 ms |
| コード長 | 7,296 bytes |
| コンパイル時間 | 13,978 ms |
| コンパイル使用メモリ | 378,432 KB |
| 実行使用メモリ | 26,864 KB |
| 最終ジャッジ日時 | 2024-10-10 16:26:29 |
| 合計ジャッジ時間 | 43,233 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 43 |
ソースコード
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342
mod mod_int {
use std::ops::*;
pub trait Mod: Copy { fn m() -> i64; }
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
impl<M: Mod> ModInt<M> {
// x >= 0
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
fn new_internal(x: i64) -> Self {
ModInt { x: x, phantom: ::std::marker::PhantomData }
}
pub fn pow(self, mut e: i64) -> Self {
debug_assert!(e >= 0);
let mut sum = ModInt::new_internal(1);
let mut cur = self;
while e > 0 {
if e % 2 != 0 { sum *= cur; }
cur *= cur;
e /= 2;
}
sum
}
#[allow(dead_code)]
pub fn inv(self) -> Self { self.pow(M::m() - 2) }
}
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
type Output = Self;
fn add(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x + other.x;
if sum >= M::m() { sum -= M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
type Output = Self;
fn sub(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x - other.x;
if sum < 0 { sum += M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
type Output = Self;
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
}
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
fn add_assign(&mut self, other: T) { *self = *self + other; }
}
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
fn sub_assign(&mut self, other: T) { *self = *self - other; }
}
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
fn mul_assign(&mut self, other: T) { *self = *self * other; }
}
impl<M: Mod> Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self { ModInt::new(0) - self }
}
impl<M> ::std::fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.x.fmt(f)
}
}
impl<M: Mod> From<i64> for ModInt<M> {
fn from(x: i64) -> Self { Self::new(x) }
}
} // mod mod_int
macro_rules! define_mod {
($struct_name: ident, $modulo: expr) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct $struct_name {}
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
}
}
const MOD: i64 = 998_244_353;
define_mod!(P, MOD);
type MInt = mod_int::ModInt<P>;
/**
* Segment Tree. This data structure is useful for fast folding on intervals of an array
* whose elements are elements of monoid I. Note that constructing this tree requires the identity
* element of I and the operation of I.
* Verified by: yukicoder No. 259 (http://yukicoder.me/submissions/100581)
* AGC015-E (http://agc015.contest.atcoder.jp/submissions/1461001)
*/
struct SegTree<I, BiOp> {
n: usize,
dat: Vec<I>,
op: BiOp,
e: I,
}
impl<I, BiOp> SegTree<I, BiOp>
where BiOp: Fn(I, I) -> I,
I: Copy {
pub fn new(n_: usize, op: BiOp, e: I) -> Self {
let mut n = 1;
while n < n_ { n *= 2; } // n is a power of 2
SegTree {n: n, dat: vec![e; 2 * n - 1], op: op, e: e}
}
/* ary[k] <- v */
pub fn update(&mut self, idx: usize, v: I) {
let mut k = idx + self.n - 1;
self.dat[k] = v;
while k > 0 {
k = (k - 1) / 2;
self.dat[k] = (self.op)(self.dat[2 * k + 1], self.dat[2 * k + 2]);
}
}
/* [a, b) (note: half-inclusive)
* http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/ */
pub fn query(&self, mut a: usize, mut b: usize) -> I {
let mut left = self.e;
let mut right = self.e;
a += self.n - 1;
b += self.n - 1;
while a < b {
if (a & 1) == 0 {
left = (self.op)(left, self.dat[a]);
}
if (b & 1) == 0 {
right = (self.op)(self.dat[b - 1], right);
}
a = a / 2;
b = (b - 1) / 2;
}
(self.op)(left, right)
}
}
fn calc_1d(x: &[i64]) -> MInt {
let n = x.len();
let mut tot = MInt::new(0);
let mut s = MInt::new(0);
for &x in x {
s += x;
tot += MInt::new(x) * x * n as i64;
}
tot - s * s
}
fn calc_ru(xy: &[(i64, i64)]) -> MInt {
let mut coord: Vec<i64> = xy.iter().map(|a| a.1).collect();
coord.sort(); coord.dedup();
let m = coord.len();
let mut st_cnt = SegTree::new(m, |x, y| x + y, MInt::new(0));
let mut st_x = SegTree::new(m, |x, y| x + y, MInt::new(0));
let mut st_y = SegTree::new(m, |x, y| x + y, MInt::new(0));
let mut st_val = SegTree::new(m, |x, y| x + y, MInt::new(0));
let mut tot = MInt::new(0);
for &(x, y) in xy.iter().rev() {
let yidx = coord.binary_search(&y).unwrap();
let val = st_val.query(yidx + 1, m);
let xsum = st_x.query(yidx + 1, m);
let ysum = st_y.query(yidx + 1, m);
let cnt = st_cnt.query(yidx + 1, m);
tot += val - xsum * y - ysum * x + cnt * x * y;
st_cnt.update(yidx, st_cnt.query(yidx, yidx + 1) + 1);
st_x.update(yidx, st_x.query(yidx, yidx + 1) + x);
st_y.update(yidx, st_y.query(yidx, yidx + 1) + y);
st_val.update(yidx, st_val.query(yidx, yidx + 1) + x * y);
}
tot * 2
}
fn main() {
input! {
n: usize,
xy: [(i64, i64); n],
}
let mut x = vec![0; n];
let mut y = vec![0; n];
for i in 0..n {
let (a, b) = xy[i];
x[i] = a;
y[i] = b;
}
let mut tot = calc_1d(&x) + calc_1d(&y);
let mut xy = xy;
xy.sort();
tot += calc_ru(&xy);
for i in 0..n {
xy[i].1 = 1_000_000_000 - xy[i].1;
}
tot += calc_ru(&xy);
println!("{}", tot);
}