結果
問題 |
No.1710 Minimum OR is X
|
ユーザー |
|
提出日時 | 2021-08-17 20:24:30 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 105 ms / 2,000 ms |
コード長 | 2,678 bytes |
コンパイル時間 | 487 ms |
コンパイル使用メモリ | 82,412 KB |
実行使用メモリ | 82,572 KB |
最終ジャッジ日時 | 2024-09-17 17:06:18 |
合計ジャッジ時間 | 4,030 ms |
ジャッジサーバーID (参考情報) |
judge6 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 30 |
ソースコード
mod = 998244353 omega = pow(3,119,mod) rev_omega = pow(omega,mod-2,mod) N = 2*10**5 g1 = [1]*(N+1) # 元テーブル g2 = [1]*(N+1) #逆元テーブル inv = [1]*(N+1) #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1[i]=( ( g1[i-1] * i ) % mod ) inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod ) g2[i]=( (g2[i-1] * inv[i]) % mod ) inv[0]=0 def _ntt(f,L,reverse=False): F=[f[i] for i in range(L)] n = L.bit_length() - 1 base = omega if reverse: base = rev_omega if not n: return F size = 2**n wj = pow(base,2**22,mod) res = [0]*2**n for i in range(n,0,-1): use_omega = pow(base,2**(22+i-n),mod) res = [0]*2**n size //= 2 w = 1 for j in range(0,L//2,size): for a in range(size): res[a+j] = (F[a+2*j] + w * F[a+size+2*j]) % mod t = (w * wj) % mod res[L//2+a+j] = (F[a+2*j] + t * F[a+size+2*j]) % mod w = (w * use_omega) % mod F = res return res def ntt(f,L=0): l = len(f) if not L: L = 1<<((l-1).bit_length()) while len(f)<L: f.append(0) f=f[:L] F = _ntt(f,L) return F def intt(f,L=0): l = len(f) if not L: L = 1<<((l-1).bit_length()) while len(f)<L: f.append(0) f=f[:L] F = _ntt(f,L,reverse=True) inv = pow(L,mod-2,mod) for i in range(L): F[i] *= inv F[i] %= mod return F def convolve(f,g,limit): l = len(f)+len(g)-1 L = 1<<((l-1).bit_length()) F = ntt(f,L) G = ntt(g,L) H = [(F[i] * G[i]) % mod for i in range(L)] h = intt(H,L) return h[:limit] def cmb(n, r, mod): if ( r<0 or r>n ): return 0 return (g1[n] * g2[r] % mod) * g2[n-r] % mod import sys,random,bisect from collections import deque,defaultdict from heapq import heapify,heappop,heappush from itertools import permutations from math import gcd,log input = lambda :sys.stdin.readline().rstrip() mi = lambda :map(int,input().split()) li = lambda :list(mi()) N,M,K = mi() X = input() comb_cum = [0 for i in range(N+1)] comb_cum[0] = 1 for i in range(1,N+1): comb_cum[i] = (2 * comb_cum[i-1] + cmb(i-1,K,mod) - cmb(i,K,mod)) % mod dp = [0 for j in range(N+1)] dp[N] = 1 for bit in range(M-1,-1,-1): t = pow(2,bit,mod) if X[M-1-bit]=="0": f = [g2[k] * pow(t,k,mod) % mod for k in range(N+1)[::-1]] dp = convolve(f,dp,2*N+1)[N:2*N+1] else: dp = [dp[rest] * comb_cum[rest] % mod for rest in range(N+1)] ans = sum(dp[rest]*(g1[N]*g2[rest] % mod) % mod for rest in range(K,N+1)) % mod print(ans)