結果

問題 No.1615 Double Down
ユーザー hitonanode
提出日時 2021-08-18 00:57:01
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 6,807 bytes
コンパイル時間 1,175 ms
コンパイル使用メモリ 89,952 KB
最終ジャッジ日時 2025-01-23 22:49:35
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 33 TLE * 21
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 1 "combinatorial_opt/test/mcf_costscaling.yuki1615.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/1615"
#line 2 "data_structure/light_forward_list.hpp"
#include <vector>
// CUT begin
// Simple forward_list for MLE-sensitive situations
// Verify: <http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ALDS1_14_D>
template <typename T> struct light_forward_list {
static std::vector<unsigned> ptr;
static std::vector<T> val;
unsigned head;
light_forward_list() : head(0) {}
void push_front(T x) {
ptr.push_back(head), val.push_back(x);
head = ptr.size() - 1;
}
struct iterator {
unsigned p;
iterator operator++() { return {p = ptr[p]}; }
T &operator*() { return val[p]; }
bool operator!=(const iterator &rhs) { return p != rhs.p; }
};
iterator begin() { return {head}; }
iterator end() { return {0}; }
};
template <typename T> std::vector<unsigned> light_forward_list<T>::ptr = {0};
template <typename T> std::vector<T> light_forward_list<T>::val = {T()};
#line 3 "combinatorial_opt/mcf_costscaling.hpp"
#include <cassert>
#include <queue>
#line 6 "combinatorial_opt/mcf_costscaling.hpp"
// Cost scaling
// https://people.orie.cornell.edu/dpw/orie633/
// Implementation idea: https://yukicoder.me/submissions/680169
template <class Cap, class Cost, int SCALING = 1, int SKIP_REFINE_DEPTH = 20> struct mcf_costscaling {
mcf_costscaling() = default;
mcf_costscaling(int n) : _n(n), to(n), b(n), p(n) {}
int _n;
std::vector<Cap> cap;
std::vector<Cost> cost;
std::vector<int> opposite;
std::vector<light_forward_list<int>> to;
std::vector<Cap> b;
std::vector<Cost> p;
void add_edge(int from_, int to_, Cap cap_, Cost cost_) {
assert(0 <= from_ && from_ < _n);
assert(0 <= to_ && to_ < _n);
assert(0 <= cap_);
cost_ *= (_n + 1);
int e = int(cap.size());
to[from_].push_front(e);
cap.push_back(cap_);
cost.push_back(cost_);
opposite.push_back(to_);
to[to_].push_front(e + 1);
cap.push_back(0);
cost.push_back(-cost_);
opposite.push_back(from_);
}
void add_supply(int v, Cap supply) { b[v] += supply; }
void add_demand(int v, Cap demand) { add_supply(v, -demand); }
template <typename RetCost = Cost> RetCost solve() {
Cost eps = 1;
std::queue<int> q;
for (const auto c : cost) {
while (eps <= -c) eps <<= SCALING;
}
for (; eps >>= SCALING;) {
auto no_negative_loop = [&]() -> bool {
std::vector<Cost> dist = p;
for (int iter = 0; iter < SKIP_REFINE_DEPTH; iter++) {
bool flg = false;
for (int e = 0; e < int(cap.size()); e++) {
if (!cap[e]) continue;
int i = opposite[e ^ 1], j = opposite[e];
if (dist[j] > dist[i] + cost[e] + eps) {
dist[j] = dist[i] + cost[e] + eps;
flg = true;
}
}
if (!flg) {
p = dist;
return true;
}
}
return false;
};
if (no_negative_loop()) continue;
for (int e = 0; e < int(cap.size()); e += 2) {
const int i = opposite[e ^ 1], j = opposite[e];
const Cost cp_ij = cost[e] + p[i] - p[j];
if (cap[e] and cp_ij < 0) {
b[i] -= cap[e], b[j] += cap[e], cap[e ^ 1] += cap[e], cap[e] = 0;
} else if (cap[e ^ 1] and cp_ij > 0) {
b[i] += cap[e ^ 1], b[j] -= cap[e ^ 1], cap[e] += cap[e ^ 1], cap[e ^ 1] = 0;
}
}
for (int i = 0; i < _n; i++) {
if (b[i] > 0) q.push(i);
}
while (q.size()) {
const int i = q.front();
q.pop();
for (auto e : to[i]) { // Push
if (!cap[e]) continue;
int j = opposite[e];
Cost cp_ij = cost[e] + p[i] - p[j];
if (cp_ij >= 0) continue;
Cap f = b[i] > cap[e] ? cap[e] : b[i];
if (b[j] <= 0 and b[j] + f > 0) q.push(j);
b[i] -= f, b[j] += f, cap[e] -= f, cap[e ^ 1] += f;
if (!b[i]) break;
}
if (b[i] > 0) { // Relabel
bool flg = false;
for (int e : to[i]) {
if (!cap[e]) continue;
Cost x = p[opposite[e]] - cost[e] - eps;
if (!flg or x > p[i]) flg = true, p[i] = x;
}
q.push(i);
}
}
}
RetCost ret = 0;
for (int e = 0; e < int(cap.size()); e += 2) ret += RetCost(cost[e]) * cap[e ^ 1];
return ret / (_n + 1);
}
std::vector<Cost> potential() {
std::vector<Cost> ret = p;
for (auto &x : ret) x /= (_n + 1);
while (true) {
bool flg = false;
for (int i = 0; i < _n; i++) {
for (auto e : to[i]) {
if (!cap[e]) continue;
int j = opposite[e];
auto y = ret[i] + cost[e] / (_n + 1);
if (ret[j] > y) ret[j] = y, flg = true;
}
}
if (!flg) break;
}
return ret;
}
struct edge {
int from, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(int e) const {
int m = cap.size() / 2;
assert(e >= 0 and e < m);
return {opposite[e * 2 + 1], opposite[e * 2], cap[e * 2] + cap[e * 2 + 1], cap[e * 2 + 1], cost[e * 2] / (_n + 1)};
}
std::vector<edge> edges() const {
int m = cap.size() / 2;
std::vector<edge> result(m);
for (int i = 0; i < m; i++) result[i] = get_edge(i);
return result;
}
};
#line 3 "combinatorial_opt/test/mcf_costscaling.yuki1615.test.cpp"
#include <iostream>
using namespace std;
int main() {
int N, M, K, L;
cin >> N >> M >> K >> L;
mcf_costscaling<int, long long, 2, 20> mcf(N + M + 2);
for (int l = 0; l < L; l++) {
int x, y, z;
cin >> x >> y >> z;
x--, y--;
mcf.add_edge(x, y + N, 1, -(1LL << z));
}
const int gs = N + M, gt = gs + 1;
for (int i = 0; i < N; i++) mcf.add_edge(gs, i, 1, 0);
for (int j = 0; j < M; j++) mcf.add_edge(N + j, gt, 1, 0);
mcf.add_edge(gt, gs, N + M, 0);
cout << -mcf.solve() << '\n';
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0