結果
問題 | No.1324 Approximate the Matrix |
ユーザー | hitonanode |
提出日時 | 2021-08-19 00:22:26 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 78 ms / 2,000 ms |
コード長 | 15,127 bytes |
コンパイル時間 | 1,674 ms |
コンパイル使用メモリ | 150,152 KB |
実行使用メモリ | 5,416 KB |
最終ジャッジ日時 | 2024-10-11 22:27:28 |
合計ジャッジ時間 | 4,550 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 55 ms
5,304 KB |
testcase_04 | AC | 53 ms
5,304 KB |
testcase_05 | AC | 58 ms
5,304 KB |
testcase_06 | AC | 53 ms
5,308 KB |
testcase_07 | AC | 66 ms
5,316 KB |
testcase_08 | AC | 8 ms
5,248 KB |
testcase_09 | AC | 6 ms
5,248 KB |
testcase_10 | AC | 11 ms
5,248 KB |
testcase_11 | AC | 19 ms
5,248 KB |
testcase_12 | AC | 6 ms
5,248 KB |
testcase_13 | AC | 4 ms
5,248 KB |
testcase_14 | AC | 22 ms
5,248 KB |
testcase_15 | AC | 11 ms
5,248 KB |
testcase_16 | AC | 3 ms
5,248 KB |
testcase_17 | AC | 13 ms
5,248 KB |
testcase_18 | AC | 5 ms
5,248 KB |
testcase_19 | AC | 4 ms
5,248 KB |
testcase_20 | AC | 4 ms
5,248 KB |
testcase_21 | AC | 3 ms
5,248 KB |
testcase_22 | AC | 4 ms
5,248 KB |
testcase_23 | AC | 10 ms
5,248 KB |
testcase_24 | AC | 25 ms
5,248 KB |
testcase_25 | AC | 13 ms
5,248 KB |
testcase_26 | AC | 14 ms
5,248 KB |
testcase_27 | AC | 7 ms
5,248 KB |
testcase_28 | AC | 2 ms
5,248 KB |
testcase_29 | AC | 2 ms
5,248 KB |
testcase_30 | AC | 2 ms
5,248 KB |
testcase_31 | AC | 2 ms
5,248 KB |
testcase_32 | AC | 2 ms
5,248 KB |
testcase_33 | AC | 2 ms
5,248 KB |
testcase_34 | AC | 2 ms
5,248 KB |
testcase_35 | AC | 2 ms
5,248 KB |
testcase_36 | AC | 2 ms
5,248 KB |
testcase_37 | AC | 61 ms
5,412 KB |
testcase_38 | AC | 58 ms
5,288 KB |
testcase_39 | AC | 70 ms
5,416 KB |
testcase_40 | AC | 78 ms
5,288 KB |
testcase_41 | AC | 61 ms
5,416 KB |
testcase_42 | AC | 5 ms
5,248 KB |
testcase_43 | AC | 5 ms
5,248 KB |
testcase_44 | AC | 5 ms
5,248 KB |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for (int i = (begin), i##_end_ = (end); i < i##_end_; i++) #define IFOR(i, begin, end) for (int i = (end)-1, i##_begin_ = (begin); i >= i##_begin_; i--) #define REP(i, n) FOR(i, 0, n) #define IREP(i, n) IFOR(i, 0, n) template <typename T, typename V> void ndarray(vector<T> &vec, const V &val, int len) { vec.assign(len, val); } template <typename T, typename V, typename... Args> void ndarray(vector<T> &vec, const V &val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T &v) { ndarray(v, val, args...); }); } template <typename T> bool chmax(T &m, const T q) { if (m < q) { m = q; return true; } else return false; } template <typename T> bool chmin(T &m, const T q) { if (m > q) { m = q; return true; } else return false; } int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); } template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); } template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } #if __cplusplus >= 201703L template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&...args) { ((is >> args), ...); }, tpl); return is; } template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { std::apply([&os](auto &&...args) { ((os << args << ','), ...); }, tpl); return os; } #endif template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; } template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) \ cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl #else #define dbg(x) (x) #endif /* MinCostFlow: Minimum-cost flow problem solver WITH NO NEGATIVE CYCLE (just negative cost edge is allowed) Verified by SRM 770 Div1 Medium <https://community.topcoder.com/stat?c=problem_statement&pm=15702> */ template <typename CAP = long long, typename COST = long long> struct MinCostFlow { const COST INF_COST = std::numeric_limits<COST>::max() / 2; struct edge { int to, rev; CAP cap; COST cost; friend std::ostream &operator<<(std::ostream &os, const edge &e) { os << '(' << e.to << ',' << e.rev << ',' << e.cap << ',' << e.cost << ')'; return os; } }; int V; std::vector<std::vector<edge>> g; std::vector<COST> dist; std::vector<int> prevv, preve; std::vector<COST> dual; // dual[V]: potential std::vector<std::pair<int, int>> pos; bool _calc_distance_bellman_ford(int s) { // O(VE), able to detect negative cycle dist.assign(V, INF_COST); dist[s] = 0; bool upd = true; int cnt = 0; while (upd) { upd = false; cnt++; if (cnt > V) return false; // Negative cycle existence for (int v = 0; v < V; v++) if (dist[v] != INF_COST) { for (int i = 0; i < (int)g[v].size(); i++) { edge &e = g[v][i]; COST c = dist[v] + e.cost + dual[v] - dual[e.to]; if (e.cap > 0 and dist[e.to] > c) { dist[e.to] = c, prevv[e.to] = v, preve[e.to] = i; upd = true; } } } } return true; } bool _calc_distance_dijkstra(int s) { // O(ElogV) dist.assign(V, INF_COST); dist[s] = 0; using P = std::pair<COST, int>; std::priority_queue<P, std::vector<P>, std::greater<P>> q; q.emplace(0, s); while (!q.empty()) { P p = q.top(); q.pop(); int v = p.second; if (dist[v] < p.first) continue; for (int i = 0; i < (int)g[v].size(); i++) { edge &e = g[v][i]; COST c = dist[v] + e.cost + dual[v] - dual[e.to]; if (e.cap > 0 and dist[e.to] > c) { dist[e.to] = c, prevv[e.to] = v, preve[e.to] = i; q.emplace(dist[e.to], e.to); } } } return true; } MinCostFlow(int V = 0) : V(V), g(V) {} void add_edge(int from, int to, CAP cap, COST cost) { assert(0 <= from and from < V); assert(0 <= to and to < V); pos.emplace_back(from, g[from].size()); g[from].emplace_back(edge{to, (int)g[to].size() + (from == to), cap, cost}); g[to].emplace_back(edge{from, (int)g[from].size() - 1, (CAP)0, -cost}); } std::pair<CAP, COST> flow(int s, int t, const CAP &f) { /* Flush amount of `f` from `s` to `t` using the Dijkstra's algorithm works for graph with no negative cycles (negative cost edges are allowed) retval: (flow, cost) */ COST ret = 0; dual.assign(V, 0); prevv.assign(V, -1); preve.assign(V, -1); CAP frem = f; while (frem > 0) { _calc_distance_dijkstra(s); if (dist[t] == INF_COST) break; for (int v = 0; v < V; v++) dual[v] = std::min(dual[v] + dist[v], INF_COST); CAP d = frem; for (int v = t; v != s; v = prevv[v]) { d = std::min(d, g[prevv[v]][preve[v]].cap); } frem -= d; ret += d * dual[t]; for (int v = t; v != s; v = prevv[v]) { edge &e = g[prevv[v]][preve[v]]; e.cap -= d; g[v][e.rev].cap += d; } } return std::make_pair(f - frem, ret); } friend std::ostream &operator<<(std::ostream &os, const MinCostFlow &mcf) { os << "[MinCostFlow]V=" << mcf.V << ":"; for (int i = 0; i < (int)mcf.g.size(); i++) for (auto &e : mcf.g[i]) { os << "\n" << i << "->" << e.to << ": cap=" << e.cap << ", cost=" << e.cost; } return os; } }; // https://people.orie.cornell.edu/dpw/orie633/ template <class Cap, class Cost, int SCALING = 1, int REFINEMENT_ITER = 20> struct mcf_costscaling { mcf_costscaling() = default; mcf_costscaling(int n) : _n(n), to(n), b(n), p(n) {} int _n; std::vector<Cap> cap; std::vector<Cost> cost; std::vector<int> opposite; std::vector<std::vector<int>> to; std::vector<Cap> b; std::vector<Cost> p; int add_edge(int from_, int to_, Cap cap_, Cost cost_) { assert(0 <= from_ and from_ < _n); assert(0 <= to_ and to_ < _n); assert(0 <= cap_); cost_ *= (_n + 1); const int e = int(cap.size()); to[from_].push_back(e); cap.push_back(cap_); cost.push_back(cost_); opposite.push_back(to_); to[to_].push_back(e + 1); cap.push_back(0); cost.push_back(-cost_); opposite.push_back(from_); return e / 2; } void add_supply(int v, Cap supply) { b[v] += supply; } void add_demand(int v, Cap demand) { add_supply(v, -demand); } template <typename RetCost = Cost> RetCost solve() { Cost eps = 1; std::vector<int> que; for (const auto c : cost) { while (eps <= -c) eps <<= SCALING; } for (; eps >>= SCALING;) { auto no_admissible_cycle = [&]() -> bool { for (int i = 0; i < _n; i++) { if (b[i]) return false; } std::vector<Cost> pp = p; for (int iter = 0; iter < REFINEMENT_ITER; iter++) { bool flg = false; for (int e = 0; e < int(cap.size()); e++) { if (!cap[e]) continue; int i = opposite[e ^ 1], j = opposite[e]; if (pp[j] > pp[i] + cost[e] + eps) pp[j] = pp[i] + cost[e] + eps, flg = true; } if (!flg) return p = pp, true; } return false; }; if (no_admissible_cycle()) continue; // Refine for (int e = 0; e < int(cap.size()); e++) { const int i = opposite[e ^ 1], j = opposite[e]; const Cost cp_ij = cost[e] + p[i] - p[j]; if (cap[e] and cp_ij < 0) b[i] -= cap[e], b[j] += cap[e], cap[e ^ 1] += cap[e], cap[e] = 0; } que.clear(); int qh = 0; for (int i = 0; i < _n; i++) { if (b[i] > 0) que.push_back(i); } std::vector<int> iters(_n); while (qh < int(que.size())) { const int i = que[qh++]; for (; iters[i] < int(to[i].size()) and b[i]; ++iters[i]) { // Push int e = to[i][iters[i]]; if (!cap[e]) continue; int j = opposite[e]; Cost cp_ij = cost[e] + p[i] - p[j]; if (cp_ij >= 0) continue; Cap f = b[i] > cap[e] ? cap[e] : b[i]; if (b[j] <= 0 and b[j] + f > 0) que.push_back(j); b[i] -= f, b[j] += f, cap[e] -= f, cap[e ^ 1] += f; } if (b[i] > 0) { // Relabel bool flg = false; for (int e : to[i]) { if (!cap[e]) continue; Cost x = p[opposite[e]] - cost[e] - eps; if (!flg or x > p[i]) flg = true, p[i] = x; } que.push_back(i), iters[i] = 0; } } } RetCost ret = 0; for (int e = 0; e < int(cap.size()); e += 2) ret += RetCost(cost[e]) * cap[e ^ 1]; return ret / (_n + 1); } std::vector<Cost> potential() const { std::vector<Cost> ret = p, c0 = cost; for (auto &x : ret) x /= (_n + 1); for (auto &x : c0) x /= (_n + 1); while (true) { bool flg = false; for (int i = 0; i < _n; i++) { for (const auto e : to[i]) { if (!cap[e]) continue; int j = opposite[e]; auto y = ret[i] + c0[e]; if (ret[j] > y) ret[j] = y, flg = true; } } if (!flg) break; } return ret; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int e) const { int m = cap.size() / 2; assert(e >= 0 and e < m); return {opposite[e * 2 + 1], opposite[e * 2], cap[e * 2] + cap[e * 2 + 1], cap[e * 2 + 1], cost[e * 2] / (_n + 1)}; } std::vector<edge> edges() const { int m = cap.size() / 2; std::vector<edge> result(m); for (int i = 0; i < m; i++) result[i] = get_edge(i); return result; } }; int main() { int N, K; cin >> N >> K; vector<int> A(N), B(N); vector P(N, vector<int>(N)); cin >> A >> B >> P; const int gs = N * 2, gt = gs + 1; mcf_costscaling<int, lint> graph(gt + 1); lint ret = 0; REP(i, N) REP(j, N) { ret += P[i][j] * P[i][j]; REP(a, A[i]) graph.add_edge(i, j + N, 1, 2 * (a - P[i][j]) + 1); } REP(i, N) { graph.add_edge(gs, i, A[i], 0); graph.add_edge(i + N, gt, B[i], 0); } graph.add_supply(gs, K); graph.add_demand(gt, K); cout << ret + graph.solve() << '\n'; }