結果
| 問題 |
No.718 行列のできるフィボナッチ数列道場 (1)
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2021-08-20 21:49:18 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 158 ms / 2,000 ms |
| コード長 | 4,023 bytes |
| コンパイル時間 | 187 ms |
| コンパイル使用メモリ | 82,176 KB |
| 実行使用メモリ | 89,472 KB |
| 最終ジャッジ日時 | 2024-10-14 03:17:37 |
| 合計ジャッジ時間 | 4,711 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 20 |
ソースコード
import bisect
import copy
import decimal
import fractions
import functools
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
if heap and item < heap[0]:
item, heap[0] = heap[0], item
heapq._siftup_max(heap, 0)
return item
from math import degrees, gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
def FFT(polynomial1,polynomial2,digit=10**5):
def DFT(polynomial,n,inverse=False):
N=len(polynomial)
if inverse:
primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
else:
primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
dft=polynomial+[0]*((1<<n)-N)
if inverse:
for bit in range(1,n+1):
a=1<<bit-1
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
dft[s],dft[t]=dft[s]+dft[t]*primitive_root[j<<n-bit],dft[s]-dft[t]*primitive_root[j<<n-bit]
else:
for bit in range(n,0,-1):
a=1<<bit-1
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
dft[s],dft[t]=dft[s]+dft[t],primitive_root[j<<n-bit]*(dft[s]-dft[t])
return dft
def FFT_(polynomial1,polynomial2):
N1=len(polynomial1)
N2=len(polynomial2)
N=N1+N2-1
n=(N-1).bit_length()
fft=[x*y for x,y in zip(DFT(polynomial1,n),DFT(polynomial2,n))]
fft=DFT(fft,n,inverse=True)
fft=[round((fft[i]/(1<<n)).real) for i in range(N)]
return fft
N1=len(polynomial1)
N2=len(polynomial2)
N=N1+N2-1
polynomial11,polynomial12=[None]*N1,[None]*N1
polynomial21,polynomial22=[None]*N2,[None]*N2
for i in range(N1):
polynomial11[i],polynomial12[i]=divmod(polynomial1[i],digit)
for i in range(N2):
polynomial21[i],polynomial22[i]=divmod(polynomial2[i],digit)
polynomial=[0]*(N)
a=digit**2-digit
for i,x in enumerate(FFT_(polynomial11,polynomial21)):
polynomial[i]+=x*a
a=digit-1
for i,x in enumerate(FFT_(polynomial12,polynomial22)):
polynomial[i]-=x*a
for i,x in enumerate(FFT_([x1+x2 for x1,x2 in zip(polynomial11,polynomial12)],[x1+x2 for x1,x2 in zip(polynomial21,polynomial22)])):
polynomial[i]+=x*digit
return polynomial
def Bostan_Mori(poly_deno,poly_nume,N,mod=0,fft=False,ntt=False):
if ntt:
convolve=NTT
elif fft:
convolve=FFT
else:
def convolve(poly_deno,poly_nume):
conv=[0]*(len(poly_deno)+len(poly_nume)-1)
for i in range(len(poly_deno)):
for j in range(len(poly_nume)):
conv[i+j]+=poly_deno[i]*poly_nume[j]
if mod:
for i in range(len(conv)):
conv[i]%=mod
return conv
while N:
poly_nume_=[-x if i%2 else x for i,x in enumerate(poly_nume)]
if N%2:
poly_deno=convolve(poly_deno,poly_nume_)[1::2]
else:
poly_deno=convolve(poly_deno,poly_nume_)[::2]
poly_nume=convolve(poly_nume,poly_nume_)[::2]
if fft and mod:
for i in range(len(poly_deno)):
poly_deno[i]%=mod
for i in range(len(poly_nume)):
poly_nume[i]%=mod
N//=2
return poly_deno[0]
N=int(readline())
mod=10**9+7
ans=Bostan_Mori([0,1],[1,-1,-1],N,mod=mod)*Bostan_Mori([0,1],[1,-1,-1],N+1,mod=mod)%mod
print(ans)
vwxyz