結果
問題 | No.718 行列のできるフィボナッチ数列道場 (1) |
ユーザー | vwxyz |
提出日時 | 2021-08-20 21:49:26 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
AC
|
実行時間 | 46 ms / 2,000 ms |
コード長 | 4,023 bytes |
コンパイル時間 | 281 ms |
コンパイル使用メモリ | 13,056 KB |
実行使用メモリ | 12,160 KB |
最終ジャッジ日時 | 2024-10-14 03:17:32 |
合計ジャッジ時間 | 2,262 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 43 ms
11,904 KB |
testcase_01 | AC | 46 ms
12,160 KB |
testcase_02 | AC | 44 ms
11,904 KB |
testcase_03 | AC | 43 ms
12,032 KB |
testcase_04 | AC | 43 ms
11,904 KB |
testcase_05 | AC | 42 ms
11,904 KB |
testcase_06 | AC | 44 ms
11,904 KB |
testcase_07 | AC | 44 ms
12,032 KB |
testcase_08 | AC | 44 ms
12,160 KB |
testcase_09 | AC | 43 ms
11,904 KB |
testcase_10 | AC | 43 ms
12,160 KB |
testcase_11 | AC | 44 ms
12,032 KB |
testcase_12 | AC | 42 ms
11,904 KB |
testcase_13 | AC | 43 ms
12,032 KB |
testcase_14 | AC | 43 ms
12,032 KB |
testcase_15 | AC | 43 ms
11,904 KB |
testcase_16 | AC | 43 ms
12,032 KB |
testcase_17 | AC | 43 ms
12,032 KB |
testcase_18 | AC | 43 ms
11,904 KB |
testcase_19 | AC | 43 ms
11,904 KB |
testcase_20 | AC | 43 ms
12,032 KB |
testcase_21 | AC | 43 ms
11,904 KB |
testcase_22 | AC | 43 ms
12,032 KB |
ソースコード
import bisect import copy import decimal import fractions import functools import heapq import itertools import math import random import sys from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import degrees, gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines def FFT(polynomial1,polynomial2,digit=10**5): def DFT(polynomial,n,inverse=False): N=len(polynomial) if inverse: primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)] else: primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)] dft=polynomial+[0]*((1<<n)-N) if inverse: for bit in range(1,n+1): a=1<<bit-1 for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a dft[s],dft[t]=dft[s]+dft[t]*primitive_root[j<<n-bit],dft[s]-dft[t]*primitive_root[j<<n-bit] else: for bit in range(n,0,-1): a=1<<bit-1 for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a dft[s],dft[t]=dft[s]+dft[t],primitive_root[j<<n-bit]*(dft[s]-dft[t]) return dft def FFT_(polynomial1,polynomial2): N1=len(polynomial1) N2=len(polynomial2) N=N1+N2-1 n=(N-1).bit_length() fft=[x*y for x,y in zip(DFT(polynomial1,n),DFT(polynomial2,n))] fft=DFT(fft,n,inverse=True) fft=[round((fft[i]/(1<<n)).real) for i in range(N)] return fft N1=len(polynomial1) N2=len(polynomial2) N=N1+N2-1 polynomial11,polynomial12=[None]*N1,[None]*N1 polynomial21,polynomial22=[None]*N2,[None]*N2 for i in range(N1): polynomial11[i],polynomial12[i]=divmod(polynomial1[i],digit) for i in range(N2): polynomial21[i],polynomial22[i]=divmod(polynomial2[i],digit) polynomial=[0]*(N) a=digit**2-digit for i,x in enumerate(FFT_(polynomial11,polynomial21)): polynomial[i]+=x*a a=digit-1 for i,x in enumerate(FFT_(polynomial12,polynomial22)): polynomial[i]-=x*a for i,x in enumerate(FFT_([x1+x2 for x1,x2 in zip(polynomial11,polynomial12)],[x1+x2 for x1,x2 in zip(polynomial21,polynomial22)])): polynomial[i]+=x*digit return polynomial def Bostan_Mori(poly_deno,poly_nume,N,mod=0,fft=False,ntt=False): if ntt: convolve=NTT elif fft: convolve=FFT else: def convolve(poly_deno,poly_nume): conv=[0]*(len(poly_deno)+len(poly_nume)-1) for i in range(len(poly_deno)): for j in range(len(poly_nume)): conv[i+j]+=poly_deno[i]*poly_nume[j] if mod: for i in range(len(conv)): conv[i]%=mod return conv while N: poly_nume_=[-x if i%2 else x for i,x in enumerate(poly_nume)] if N%2: poly_deno=convolve(poly_deno,poly_nume_)[1::2] else: poly_deno=convolve(poly_deno,poly_nume_)[::2] poly_nume=convolve(poly_nume,poly_nume_)[::2] if fft and mod: for i in range(len(poly_deno)): poly_deno[i]%=mod for i in range(len(poly_nume)): poly_nume[i]%=mod N//=2 return poly_deno[0] N=int(readline()) mod=10**9+7 ans=Bostan_Mori([0,1],[1,-1,-1],N,mod=mod)*Bostan_Mori([0,1],[1,-1,-1],N+1,mod=mod)%mod print(ans)