結果

問題 No.1653 Squarefree
ユーザー hitonanodehitonanode
提出日時 2021-08-20 21:58:54
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 13,324 bytes
コンパイル時間 1,657 ms
コンパイル使用メモリ 153,184 KB
実行使用メモリ 13,696 KB
最終ジャッジ日時 2024-10-14 03:34:36
合計ジャッジ時間 8,058 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 TLE -
testcase_01 -- -
testcase_02 -- -
testcase_03 -- -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl
#define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr)
#else
#define dbg(x) (x)
#define dbgif(cond, x) 0
#endif

// Linear sieve algorithm for fast prime factorization
// Complexity: O(N) time, O(N) space:
// - MAXN = 10^7:  ~44 MB,  80~100 ms (Codeforces / AtCoder GCC, C++17)
// - MAXN = 10^8: ~435 MB, 810~980 ms (Codeforces / AtCoder GCC, C++17)
// Reference:
// [1] D. Gries, J. Misra, "A Linear Sieve Algorithm for Finding Prime Numbers,"
//     Communications of the ACM, 21(12), 999-1003, 1978.
// - https://cp-algorithms.com/algebra/prime-sieve-linear.html
// - https://37zigen.com/linear-sieve/
struct Sieve {
    std::vector<int> min_factor;
    std::vector<int> primes;
    Sieve(int MAXN) : min_factor(MAXN + 1) {
        for (int d = 2; d <= MAXN; d++) {
            if (!min_factor[d]) {
                min_factor[d] = d;
                primes.emplace_back(d);
            }
            for (const auto &p : primes) {
                if (p > min_factor[d] or d * p > MAXN) break;
                min_factor[d * p] = p;
            }
        }
    }
    // Prime factorization for 1 <= x <= MAXN^2
    // Complexity: O(log x)           (x <= MAXN)
    //             O(MAXN / log MAXN) (MAXN < x <= MAXN^2)
    template <typename T> std::map<T, int> factorize(T x) const {
        std::map<T, int> ret;
        assert(x > 0 and x <= ((long long)min_factor.size() - 1) * ((long long)min_factor.size() - 1));
        for (const auto &p : primes) {
            if (x < T(min_factor.size())) break;
            while (!(x % p)) x /= p, ret[p]++;
        }
        if (x >= T(min_factor.size())) ret[x]++, x = 1;
        while (x > 1) ret[min_factor[x]]++, x /= min_factor[x];
        return ret;
    }
    // Enumerate divisors of 1 <= x <= MAXN^2
    // Be careful of highly composite numbers https://oeis.org/A002182/list https://gist.github.com/dario2994/fb4713f252ca86c1254d#file-list-txt
    // (n, (# of div. of n)): 45360->100, 735134400(<1e9)->1344, 963761198400(<1e12)->6720
    template <typename T> std::vector<T> divisors(T x) const {
        std::vector<T> ret{1};
        for (const auto p : factorize(x)) {
            int n = ret.size();
            for (int i = 0; i < n; i++) {
                for (T a = 1, d = 1; d <= p.second; d++) {
                    a *= p.first;
                    ret.push_back(ret[i] * a);
                }
            }
        }
        return ret; // NOT sorted
    }
    // Euler phi functions of divisors of given x
    // Verified: ABC212 G https://atcoder.jp/contests/abc212/tasks/abc212_g
    // Complexity: O(sqrt(x) + d(x))
    template <typename T> std::map<T, T> euler_of_divisors(T x) const {
        assert(x >= 1);
        std::map<T, T> ret;
        ret[1] = 1;
        std::vector<T> divs{1};
        for (auto p : factorize(x)) {
            int n = ret.size();
            for (int i = 0; i < n; i++) {
                ret[divs[i] * p.first] = ret[divs[i]] * (p.first - 1);
                divs.push_back(divs[i] * p.first);
                for (T a = divs[i] * p.first, d = 1; d < p.second; a *= p.first, d++) {
                    ret[a * p.first] = ret[a] * p.first;
                    divs.push_back(a * p.first);
                }
            }
        }
        return ret;
    }
    // Moebius function Table, (-1)^{# of different prime factors} for square-free x
    // return: [0=>0, 1=>1, 2=>-1, 3=>-1, 4=>0, 5=>-1, 6=>1, 7=>-1, 8=>0, ...] https://oeis.org/A008683
    std::vector<int> GenerateMoebiusFunctionTable() const {
        std::vector<int> ret(min_factor.size());
        for (unsigned i = 1; i < min_factor.size(); i++) {
            if (i == 1) {
                ret[i] = 1;
            } else if ((i / min_factor[i]) % min_factor[i] == 0) {
                ret[i] = 0;
            } else {
                ret[i] = -ret[i / min_factor[i]];
            }
        }
        return ret;
    }
    // Calculate [0^K, 1^K, ..., nmax^K] in O(nmax)
    // Note: **0^0 == 1**
    template <typename MODINT> std::vector<MODINT> enumerate_kth_pows(long long K, int nmax) const {
        assert(nmax < int(min_factor.size()));
        assert(K >= 0);
        if (K == 0) return std::vector<MODINT>(nmax + 1, 1);
        std::vector<MODINT> ret(nmax + 1);
        ret[0] = 0, ret[1] = 1;
        for (int n = 2; n <= nmax; n++) {
            if (min_factor[n] == n) {
                ret[n] = MODINT(n).pow(K);
            } else {
                ret[n] = ret[n / min_factor[n]] * ret[min_factor[n]];
            }
        }
        return ret;
    }
};
Sieve sieve(100);

namespace SPRP {
// http://miller-rabin.appspot.com/
const std::vector<std::vector<__int128>> bases{
    {126401071349994536},                              // < 291831
    {336781006125, 9639812373923155},                  // < 1050535501 (1e9)
    {2, 2570940, 211991001, 3749873356},               // < 47636622961201 (4e13)
    {2, 325, 9375, 28178, 450775, 9780504, 1795265022} // <= 2^64
};
inline int get_id(long long n) {
    if (n < 291831) {
        return 0;
    } else if (n < 1050535501) {
        return 1;
    } else if (n < 47636622961201)
        return 2;
    else {
        return 3;
    }
}
} // namespace SPRP

// Miller-Rabin primality test
// https://ja.wikipedia.org/wiki/%E3%83%9F%E3%83%A9%E3%83%BC%E2%80%93%E3%83%A9%E3%83%93%E3%83%B3%E7%B4%A0%E6%95%B0%E5%88%A4%E5%AE%9A%E6%B3%95
// Complexity: O(lg n) per query
struct {
    long long modpow(__int128 x, __int128 n, long long mod) noexcept {
        __int128 ret = 1;
        for (x %= mod; n; x = x * x % mod, n >>= 1) ret = (n & 1) ? ret * x % mod : ret;
        return ret;
    }
    bool operator()(long long n) noexcept {
        if (n < 2) return false;
        if (n % 2 == 0) return n == 2;
        int s = __builtin_ctzll(n - 1);

        for (__int128 a : SPRP::bases[SPRP::get_id(n)]) {
            if (a % n == 0) continue;
            a = modpow(a, (n - 1) >> s, n);
            bool may_composite = true;
            if (a == 1) continue;
            for (int r = s; r--; a = a * a % n) {
                if (a == n - 1) may_composite = false;
            }
            if (may_composite) return false;
        }
        return true;
    }
} is_prime;

struct {
    // Pollard's rho algorithm: find factor greater than 1
    long long find_factor(long long n) {
        assert(n > 1);
        if (n % 2 == 0) return 2;
        if (is_prime(n)) return n;
        long long c = 1;
        auto f = [&](__int128 x) -> long long { return (x * x + c) % n; };

        for (int t = 1;; t++) {
            long long x0 = t, m = std::max(n >> 3, 1LL), x, ys, y = x0, r = 1, g, q = 1;
            do {
                x = y;
                for (int i = r; i--;) y = f(y);
                long long k = 0;
                do {
                    ys = y;
                    for (int i = std::min(m, r - k); i--;) y = f(y), q = __int128(q) * std::abs(x - y) % n;
                    g = std::__gcd<long long>(q, n);
                    k += m;
                } while (k < r and g <= 1);
                r <<= 1;
            } while (g <= 1);
            if (g == n) {
                do {
                    ys = f(ys);
                    g = std::__gcd(std::abs(x - ys), n);
                } while (g <= 1);
            }
            if (g != n) return g;
        }
    }

    std::vector<long long> operator()(long long n) {
        std::vector<long long> ret;
        while (n > 1) {
            long long f = find_factor(n);
            if (f < n) {
                auto tmp = operator()(f);
                ret.insert(ret.end(), tmp.begin(), tmp.end());
            } else
                ret.push_back(n);
            n /= f;
        }
        std::sort(ret.begin(), ret.end());
        return ret;
    }
} FactorizeLonglong;


int main() {
    lint L, R;
    cin >> L >> R;
    int ret = 0;
    for (lint x = L; x <= R; x++) {
        bool bad = false;
        for (auto p : sieve.primes) {
            if (x % (p * p) == 0) bad = true;
        }
        if (bad) continue;
        if (!is_prime(x)) {
            auto f = FactorizeLonglong(x);
            REP(i, f.size() - 1) if (f[i] == f[i + 1]) bad = true;
        }
        if (!bad) ret++;
    }
    cout << ret << '\n';
}
0