結果
問題 | No.1653 Squarefree |
ユーザー | iiljj |
提出日時 | 2021-08-20 22:48:05 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 1,628 bytes |
コンパイル時間 | 194 ms |
コンパイル使用メモリ | 12,672 KB |
実行使用メモリ | 270,096 KB |
最終ジャッジ日時 | 2024-10-14 04:57:59 |
合計ジャッジ時間 | 6,754 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | TLE | - |
testcase_01 | -- | - |
testcase_02 | -- | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
ソースコード
from math import sqrt, pow def Mobius(n): prime = [1] * (n + 1) mobius = [1] * (n + 1) for i in range(2, n + 1): if not prime[i]: continue mobius[i] = -1 for j in range(2, n // i + 1): prime[i * j] = 0 mobius[i * j] *= -1 for j in range(1, n // (i * i) + 1): mobius[j * i * i] = 0 return mobius def efficient_square_free(N, Imax): D = int(sqrt(N / Imax)) mobius = Mobius(D) # compute S1 s1 = 0 for i in range(1, D + 1): s1 += mobius[i] * (N // (i * i)) # compute M(d), d = 1, ..., D M_list = [0] M = 0 for m in mobius[1:]: M += m M_list.append(M) # compute M(sqrt(n / i)), i = Imax - 1, ..., 1 Mxi_list = [] Mxi_sum = 0 for i in range(Imax - 1, 0, -1): Mxi = 1 xi = int(sqrt(N // i)) sqd = int(sqrt(xi)) # sqd < D <= xi for j in range(1, xi // (sqd + 1) + 1): Mxi -= (xi // j - xi // (j + 1)) * M_list[j] for j in range(2, sqd + 1): if xi // j <= D: Mxi -= M_list[xi // j] else: Mxi -= Mxi_list[Imax - j * j * i - 1] Mxi_list.append(Mxi) Mxi_sum += Mxi # compute S2 s2 = Mxi_sum - (Imax - 1) * M_list[-1] return s1 + s2 def sub(N: int) -> int: I = int(pow(N, 1/5)) ans = efficient_square_free(N, I) return ans def main() -> None: L, R = map(int, input().split()) ans = sub(R) if L - 1 >= 1: ans -= sub(L - 1) print(ans) if __name__ == '__main__': main()