結果

問題 No.1975 Zigzag Sequence
ユーザー LayCurse
提出日時 2021-08-21 03:24:32
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 205 ms / 2,000 ms
コード長 35,297 bytes
コンパイル時間 3,923 ms
コンパイル使用メモリ 249,452 KB
最終ジャッジ日時 2025-01-24 01:09:45
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("inline")
#include<bits/stdc++.h>
using namespace std;
#define MD (1000000007U)
void*wmem;
char memarr[314572800];
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
(*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
(*arr)=(T*)(*mem);
(*mem)=((*arr)+x);
}
template<class T> inline void walloc1d(T **arr, int x1, int x2, void **mem = &wmem){
walloc1d(arr, x2-x1, mem);
(*arr) -= x1;
}
template<class T> void malloc1d(T **arr, int x){
(*arr) = (T*)malloc(x*sizeof(T));
}
template<class T> void free1d(T *arr){
free(arr);
}
template<class T1> void sortA_L(int N, T1 a[], void *mem = wmem){
sort(a, a+N);
}
template<class T1, class T2> void sortA_L(int N, T1 a[], T2 b[], void *mem = wmem){
int i;
pair<T1, T2>*arr;
walloc1d(&arr, N, &mem);
for(i=(0);i<(N);i++){
arr[i].first = a[i];
arr[i].second = b[i];
}
sort(arr, arr+N);
for(i=(0);i<(N);i++){
a[i] = arr[i].first;
b[i] = arr[i].second;
}
}
template<class T1, class T2, class T3> void sortA_L(int N, T1 a[], T2 b[], T3 c[], void *mem = wmem){
int i;
pair<T1, pair<T2, T3> >*arr;
walloc1d(&arr, N, &mem);
for(i=(0);i<(N);i++){
arr[i].first = a[i];
arr[i].second.first = b[i];
arr[i].second.second = c[i];
}
sort(arr, arr+N);
for(i=(0);i<(N);i++){
a[i] = arr[i].first;
b[i] = arr[i].second.first;
c[i] = arr[i].second.second;
}
}
struct Modint{
unsigned val;
Modint(){
val=0;
}
Modint(int a){
val = ord(a);
}
Modint(unsigned a){
val = ord(a);
}
Modint(long long a){
val = ord(a);
}
Modint(unsigned long long a){
val = ord(a);
}
inline unsigned ord(unsigned a){
return a%MD;
}
inline unsigned ord(int a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned ord(unsigned long long a){
return a%MD;
}
inline unsigned ord(long long a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned get(){
return val;
}
inline Modint &operator++(){
val++;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator--(){
if(val == 0){
val = MD - 1;
}
else{
--val;
}
return *this;
}
inline Modint operator++(int a){
Modint res(*this);
val++;
if(val >= MD){
val -= MD;
}
return res;
}
inline Modint operator--(int a){
Modint res(*this);
if(val == 0){
val = MD - 1;
}
else{
--val;
}
return res;
}
inline Modint &operator+=(Modint a){
val += a.val;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator-=(Modint a){
if(val < a.val){
val = val + MD - a.val;
}
else{
val -= a.val;
}
return *this;
}
inline Modint &operator*=(Modint a){
val = ((unsigned long long)val*a.val)%MD;
return *this;
}
inline Modint &operator/=(Modint a){
return *this *= a.inverse();
}
inline Modint operator+(Modint a){
return Modint(*this)+=a;
}
inline Modint operator-(Modint a){
return Modint(*this)-=a;
}
inline Modint operator*(Modint a){
return Modint(*this)*=a;
}
inline Modint operator/(Modint a){
return Modint(*this)/=a;
}
inline Modint operator+(int a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(int a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(int a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(int a){
return Modint(*this)/=Modint(a);
}
inline Modint operator+(long long a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(long long a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(long long a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(long long a){
return Modint(*this)/=Modint(a);
}
inline Modint operator-(void){
Modint res;
if(val){
res.val=MD-val;
}
else{
res.val=0;
}
return res;
}
inline operator bool(void){
return val!=0;
}
inline operator int(void){
return get();
}
inline operator long long(void){
return get();
}
inline Modint inverse(){
int a = val;
int b = MD;
int u = 1;
int v = 0;
int t;
Modint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += MD;
}
res.val = u;
return res;
}
inline Modint pw(unsigned long long b){
Modint a(*this);
Modint res;
res.val = 1;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
inline bool operator==(int a){
return ord(a)==val;
}
inline bool operator!=(int a){
return ord(a)!=val;
}
}
;
inline Modint operator+(int a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
static char buf[1048576];
static int s = 1048576;
static int e = 1048576;
if(s == e && e == 1048576){
e = fread_unlocked(buf, 1, 1048576, stdin);
s = 0;
}
if(s == e){
return EOF;
}
return buf[s++];
}
struct MY_WRITER{
char buf[1048576];
int s;
int e;
MY_WRITER(){
s = 0;
e = 1048576;
}
~MY_WRITER(){
if(s){
fwrite_unlocked(buf, 1, s, stdout);
}
}
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
MY_WRITER_VAR.s = 0;
}
MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
my_putchar_unlocked(a);
}
inline void wt_L(int x){
int s=0;
int m=0;
char f[10];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
my_putchar_unlocked('-');
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(unsigned x){
int s=0;
char f[10];
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(long long x){
int s=0;
int m=0;
char f[20];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
my_putchar_unlocked('-');
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(unsigned long long x){
int s=0;
char f[21];
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(Modint x){
int i;
i = (int)x;
wt_L(i);
}
int WRITER_DOUBLE_DIGIT = 15;
inline int writerDigit_double(){
return WRITER_DOUBLE_DIGIT;
}
inline void writerDigit_double(int d){
WRITER_DOUBLE_DIGIT = d;
}
inline void wt_L(double x){
const int d = WRITER_DOUBLE_DIGIT;
int k;
int r;
double v;
if(x!=x || (x==x+1 && x==2*x)){
my_putchar_unlocked('E');
my_putchar_unlocked('r');
my_putchar_unlocked('r');
return;
}
if(x < 0){
my_putchar_unlocked('-');
x = -x;
}
x += 0.5 * pow(0.1, d);
r = 0;
v = 1;
while(x >= 10*v){
v *= 10;
r++;
}
while(r >= 0){
r--;
k = floor(x / v);
if(k >= 10){
k = 9;
}
if(k <= -1){
k = 0;
}
x -= k * v;
v *= 0.1;
my_putchar_unlocked(k + '0');
}
if(d > 0){
my_putchar_unlocked('.');
v = 1;
for(r=(0);r<(d);r++){
v *= 0.1;
k = floor(x / v);
if(k >= 10){
k = 9;
}
if(k <= -1){
k = 0;
}
x -= k * v;
my_putchar_unlocked(k + '0');
}
}
}
inline void wt_L(const char c[]){
int i=0;
for(i=0;c[i]!='\0';i++){
my_putchar_unlocked(c[i]);
}
}
inline void wt_L(string &x){
int i=0;
for(i=0;x[i]!='\0';i++){
my_putchar_unlocked(x[i]);
}
}
template<class S, class T> inline S chmax(S &a, T b){
if(a<b){
a=b;
}
return a;
}
template<class T> struct Comb{
int mem_fact;
T*factri;
T*ifactri;
int mem_dfact;
T*dfactri;
int mem_pw2;
int mem_pw3;
int mem_pw10;
int mem_rep1;
T*pw2c;
T*pw3c;
T*pw10c;
T*rep1c;
int mem_ipw2;
int mem_ipw3;
int mem_ipw10;
T*ipw2c;
T*ipw3c;
T*ipw10c;
Comb(){
mem_fact = 0;
mem_dfact = 0;
mem_pw2 = mem_pw3 = mem_pw10 = mem_rep1 = 0;
mem_ipw2 = mem_ipw3 = mem_ipw10 = 0;
}
inline void expand_fact(int k){
int i;
if(k <= mem_fact){
return;
}
chmax(k, 2 * mem_fact);
if(mem_fact == 0){
factri = (T*)malloc(k * sizeof(T));
ifactri = (T*)malloc(k * sizeof(T));
factri[0] = 1;
for(i=(1);i<(k);i++){
factri[i] = i * factri[i-1];
}
ifactri[k-1] = 1 / factri[k-1];
for(i=(k-1)-1;i>=(0);i--){
ifactri[i] = (i+1) * ifactri[i+1];
}
}
else{
factri = (T*)realloc(factri, k * sizeof(T));
ifactri = (T*)realloc(ifactri, k * sizeof(T));
for(i=(mem_fact);i<(k);i++){
factri[i] = i * factri[i-1];
}
ifactri[k-1] = 1 / factri[k-1];
for(i=(k-1)-1;i>=(mem_fact);i--){
ifactri[i] = (i+1) * ifactri[i+1];
}
}
mem_fact = k;
}
inline T fac(int k){
if(mem_fact < k+1){
expand_fact(k+1);
}
return factri[k];
}
inline T ifac(int k){
if(mem_fact < k+1){
expand_fact(k+1);
}
return ifactri[k];
}
inline T C(int a, int b){
if(b < 0 || b > a){
return 0;
}
if(mem_fact < a+1){
expand_fact(a+1);
}
return factri[a] * ifactri[b] * ifactri[a-b];
}
inline T P(int a, int b){
if(b < 0 || b > a){
return 0;
}
if(mem_fact < a+1){
expand_fact(a+1);
}
return factri[a] * ifactri[a-b];
}
inline T H(int a, int b){
if(a==0 && b==0){
return 1;
}
if(a <= 0 || b < 0){
return 0;
}
if(mem_fact < a+b){
expand_fact(a+b);
}
return C(a+b-1, b);
}
inline T Multinomial(int sz, int a[]){
int i;
int s = 0;
T res;
for(i=(0);i<(sz);i++){
s += a[i];
}
if(mem_fact < s+1){
expand_fact(s+1);
}
res = factri[s];
for(i=(0);i<(sz);i++){
res *= ifactri[a[i]];
}
return res;
}
inline T Multinomial(int a){
return 1;
}
inline T Multinomial(int a, int b){
if(mem_fact < a+b+1){
expand_fact(a+b+1);
}
return factri[a+b] * ifactri[a] * ifactri[b];
}
inline T Multinomial(int a, int b, int c){
if(mem_fact < a+b+c+1){
expand_fact(a+b+c+1);
}
return factri[a+b+c] * ifactri[a] * ifactri[b] * ifactri[c];
}
inline T Multinomial(int a, int b, int c, int d){
if(mem_fact < a+b+c+d+1){
expand_fact(a+b+c+d+1);
}
return factri[a+b+c+d] * ifactri[a] * ifactri[b] * ifactri[c] * ifactri[d];
}
inline T Catalan(int n){
if(n < 0){
return 0;
}
if(mem_fact < 2*n+1){
expand_fact(2*n+1);
}
return factri[2*n] * ifactri[n] * ifactri[n+1];
}
inline T Catalan(int n, int m, int k){
if(k <= 0){
return C(n+m, n);
}
if(n < k || m < k){
return 0;
}
return C(n+m, m) - C(n+m, k-1);
}
inline T Catalan_s(long long n, long long m, long long k){
if(k <= 0){
return C_s(n+m, n);
}
if(n < k || m < k){
return 0;
}
return C_s(n+m, m) - C_s(n+m, k-1);
}
inline T C_s(long long a, long long b){
long long i;
T res;
if(b < 0 || b > a){
return 0;
}
if(b > a - b){
b = a - b;
}
res = 1;
for(i=(0);i<(b);i++){
res *= a - i;
res /= i + 1;
}
return res;
}
inline T P_s(long long a, long long b){
long long i;
T res;
if(b < 0 || b > a){
return 0;
}
res = 1;
for(i=(0);i<(b);i++){
res *= a - i;
}
return res;
}
inline T H_s(long long a, long long b){
if(a==0 && b==0){
return 1;
}
if(a <= 0 || b < 0){
return 0;
}
return C_s(a+b-1, b);
}
inline T per_s(long long n, long long k){
T d;
int m;
if(n < 0 || k < 0){
return 0;
}
if(n == k && k == 0){
return 1;
}
if(n == 0 || k == 0){
return 0;
}
if(k==1){
return 1;
}
if(k==2){
d = n / 2;
return d;
}
if(k==3){
d = (n-1) / 6;
m = (n-1) % 6;
if(m==0){
return 3 * d * d + d;
}
if(m==1){
return 3 * d * d + 2 * d;
}
if(m==2){
return 3 * d * d + 3 * d + 1;
}
if(m==3){
return 3 * d * d + 4 * d + 1;
}
if(m==4){
return 3 * d * d + 5 * d + 2;
}
if(m==5){
return 3 * d * d + 6 * d + 3;
}
}
assert(0 && "per_s should be k <= 3");
return -1;
}
inline void expand_dfact(int k){
int i;
if(k <= mem_dfact){
return;
}
chmax(k, 3);
chmax(k, 2 * mem_dfact);
if(mem_dfact==0){
dfactri = (T*)malloc(k * sizeof(T));
dfactri[0] = dfactri[1] = 1;
for(i=(2);i<(k);i++){
dfactri[i] = i * dfactri[i-2];
}
}
else{
dfactri = (T*)realloc(dfactri, k * sizeof(T));
for(i=(mem_dfact);i<(k);i++){
dfactri[i] = i * dfactri[i-2];
}
}
mem_dfact = k;
}
inline void expand_pw2(int k){
int i;
if(k <= mem_pw2){
return;
}
chmax(k, 2 * mem_pw2);
if(mem_pw2==0){
pw2c = (T*)malloc(k * sizeof(T));
pw2c[0] = 1;
for(i=(1);i<(k);i++){
pw2c[i] = 2 * pw2c[i-1];
}
}
else{
pw2c = (T*)realloc(pw2c, k * sizeof(T));
for(i=(mem_pw2);i<(k);i++){
pw2c[i] = 2 * pw2c[i-1];
}
}
mem_pw2 = k;
}
inline void expand_ipw2(int k){
int i;
if(k <= mem_ipw2){
return;
}
chmax(k, 2);
chmax(k, 2 * mem_ipw2);
if(mem_ipw2==0){
ipw2c = (T*)malloc(k * sizeof(T));
ipw2c[0] = 1;
ipw2c[1] = ipw2c[0] / 2;
for(i=(1);i<(k);i++){
ipw2c[i] = ipw2c[1] * ipw2c[i-1];
}
}
else{
ipw2c = (T*)realloc(ipw2c, k * sizeof(T));
for(i=(mem_ipw2);i<(k);i++){
ipw2c[i] = ipw2c[1] * ipw2c[i-1];
}
}
mem_ipw2 = k;
}
inline void expand_pw3(int k){
int i;
if(k <= mem_pw3){
return;
}
chmax(k, 2 * mem_pw3);
if(mem_pw3==0){
pw3c = (T*)malloc(k * sizeof(T));
pw3c[0] = 1;
for(i=(1);i<(k);i++){
pw3c[i] = 3 * pw3c[i-1];
}
}
else{
pw3c = (T*)realloc(pw3c, k * sizeof(T));
for(i=(mem_pw3);i<(k);i++){
pw3c[i] = 3 * pw3c[i-1];
}
}
mem_pw3 = k;
}
inline void expand_ipw3(int k){
int i;
if(k <= mem_ipw3){
return;
}
chmax(k, 2);
chmax(k, 2 * mem_ipw3);
if(mem_ipw3==0){
ipw3c = (T*)malloc(k * sizeof(T));
ipw3c[0] = 1;
ipw3c[1] = ipw3c[0] / 3;
for(i=(1);i<(k);i++){
ipw3c[i] = ipw3c[1] * ipw3c[i-1];
}
}
else{
ipw3c = (T*)realloc(ipw3c, k * sizeof(T));
for(i=(mem_ipw3);i<(k);i++){
ipw3c[i] = ipw3c[1] * ipw3c[i-1];
}
}
mem_ipw3 = k;
}
inline void expand_pw10(int k){
int i;
if(k <= mem_pw10){
return;
}
chmax(k, 2 * mem_pw10);
if(mem_pw10==0){
pw10c = (T*)malloc(k * sizeof(T));
pw10c[0] = 1;
for(i=(1);i<(k);i++){
pw10c[i] = 10 * pw10c[i-1];
}
}
else{
pw10c = (T*)realloc(pw10c, k * sizeof(T));
for(i=(mem_pw10);i<(k);i++){
pw10c[i] = 10 * pw10c[i-1];
}
}
mem_pw10 = k;
}
inline void expand_ipw10(int k){
int i;
if(k <= mem_ipw10){
return;
}
chmax(k, 2);
chmax(k, 2 * mem_ipw10);
if(mem_ipw10==0){
ipw10c = (T*)malloc(k * sizeof(T));
ipw10c[0] = 1;
ipw10c[1] = ipw10c[0] / 10;
for(i=(1);i<(k);i++){
ipw10c[i] = ipw10c[1] * ipw10c[i-1];
}
}
else{
ipw10c = (T*)realloc(ipw10c, k * sizeof(T));
for(i=(mem_ipw10);i<(k);i++){
ipw10c[i] = ipw10c[1] * ipw10c[i-1];
}
}
mem_ipw10 = k;
}
inline void expand_rep1(int k){
int i;
if(k <= mem_rep1){
return;
}
chmax(k, 2 * mem_rep1);
if(mem_rep1==0){
rep1c = (T*)malloc(k * sizeof(T));
rep1c[0] = 0;
for(i=(1);i<(k);i++){
rep1c[i] = 10 * rep1c[i-1] + 1;
}
}
else{
rep1c = (T*)realloc(rep1c, k * sizeof(T));
for(i=(mem_rep1);i<(k);i++){
rep1c[i] = 10 * rep1c[i-1] + 1;
}
}
mem_rep1 = k;
}
inline T dfac(int k){
if(k >= 0){
if(mem_dfact < k+1){
expand_dfact(k+1);
}
return dfactri[k];
}
if(k==-1){
return 1;
}
k = - k - 2;
if(k % 4 == 1){
return 1 / (-dfac(k));
}
return 1 / dfac(k);
}
inline T pw2(int k){
if(k >= 0){
if(mem_pw2 < k+1){
expand_pw2(k+1);
}
return pw2c[k];
}
else{
k = -k;
if(mem_ipw2 < k+1){
expand_ipw2(k+1);
}
return ipw2c[k];
}
}
inline T pw3(int k){
if(k >= 0){
if(mem_pw3 < k+1){
expand_pw3(k+1);
}
return pw3c[k];
}
else{
k = -k;
if(mem_ipw3 < k+1){
expand_ipw3(k+1);
}
return ipw3c[k];
}
}
inline T pw10(int k){
if(k >= 0){
if(mem_pw10 < k+1){
expand_pw10(k+1);
}
return pw10c[k];
}
else{
k = -k;
if(mem_ipw10 < k+1){
expand_ipw10(k+1);
}
return ipw10c[k];
}
}
inline T repunit(int k){
if(mem_rep1 < k+1){
expand_rep1(k+1);
}
return rep1c[k];
}
}
;
template<> inline Modint Comb<Modint>::C_s(long long a, long long b){
long long i;
Modint res;
Modint d;
if(b < 0 || b > a){
return 0;
}
if(b > a - b){
b = a - b;
}
res = d = 1;
for(i=(0);i<(b);i++){
res *= a - i;
d *= i + 1;
}
return res / d;
}
template<class T> int coordcomp_L(int n1, T arr1[], int n2, T arr2[], int n3, T arr3[], int res1[] = NULL, int res2[] = NULL, int res3[] = NULL,
    void *mem = wmem){
int i;
int k = 0;
int nn = n1 + n2 + n3;
pair<T,int>*r;
walloc1d(&r, nn, &mem);
for(i=(0);i<(n1);i++){
r[i].first = arr1[i];
r[i].second = i;
}
for(i=(0);i<(n2);i++){
r[n1+i].first = arr2[i];
r[n1+i].second = n1+i;
}
for(i=(0);i<(n3);i++){
r[n1+n2+i].first = arr3[i];
r[n1+n2+i].second = n1+n2+i;
}
sort(r, r+nn);
for(i=(0);i<(nn);i++){
if(i && r[i].first != r[i-1].first){
k++;
}
if(r[i].second < n1){
if(res1!=NULL){
res1[r[i].second] = k;
}
else{
arr1[r[i].second] = k;
}
}
else if(r[i].second < n1+n2){
if(res2!=NULL){
res2[r[i].second-n1] = k;
}
else{
arr2[r[i].second-n1] = k;
}
}
else{
if(res3!=NULL){
res3[r[i].second-n1-n2] = k;
}
else{
arr3[r[i].second-n1-n2] = k;
}
}
}
return k+1;
}
template<class T> struct fenwick{
int size;
int memory;
T*data;
void malloc(int mem);
void malloc(int mem, int fg);
void walloc(int mem, void **workMemory = &wmem);
void walloc(int mem, int fg, void **workMemory = &wmem);
void free(void);
void init(int N);
void add(int k, T val);
T get(int k);
T range(int a, int b);
int kth(T k);
}
;
template<class S, class T1, class T2> struct rangeTree2d{
int N;
int N2;
int*sz;
S*tot;
fenwick<S>*w;
T1**d1;
T1*ddd1;
T2*d2;
inline void build(int nn, T1 dd1[], T2 dd2[], S ww[] = NULL, void **mem = &wmem){
int i;
int j;
int i1;
int i2;
int k1;
int k2;
int s;
int s1;
int s2;
S*www;
int*ind;
N = nn;
for(N2=1;N2<N;N2*=2){
;
}
walloc1d(&sz,2*N2,mem);
walloc1d(&tot,2*N2,mem);
walloc1d(&w,2*N2,mem);
walloc1d(&d1,2*N2,mem);
walloc1d(&d2,nn,mem);
malloc1d(&www,nn);
walloc1d(&ddd1,nn);
walloc1d(&ind,nn);
for(i=(0);i<(N);i++){
ddd1[i] = dd1[i];
}
for(i=(0);i<(N);i++){
d2[i] = dd2[i];
}
if(ww==NULL){
for(i=(0);i<(N);i++){
www[i] = 1;
}
sortA_L(N,d2,ddd1);
}
else{
for(i=(0);i<(N);i++){
ind[i] = i;
}
sortA_L(N,d2,ddd1,ind);
for(i=(0);i<(N);i++){
www[i] = ww[ind[i]];
}
}
for(i=(0);i<(N);i++){
sz[N2+i] = 1;
walloc1d(&d1[N2+i], 1, mem);
d1[N2+i][0] = ddd1[i];
w[N2+i].walloc(1, mem);
w[N2+i].init(1);
w[N2+i].add(0,www[i]);
tot[N2+i] = www[i];
}
for(i=(N);i<(N2);i++){
sz[N2+i] = 0;
tot[N2+i] = 0;
}
for(i=(N2)-1;i>=(1);i--){
i1 = 2*i;
i2 = 2*i + 1;
s1 = sz[i1];
s2 = sz[i2];
sz[i] = s1 + s2;
s = k1 = k2 = 0;
walloc1d(&d1[i], sz[i], mem);
w[i].walloc(sz[i], mem);
w[i].init(sz[i]);
while(k1 < s1 || k2 < s2){
if(k2==s2){
d1[i][s] = d1[i1][k1];
w[i].add(s,w[i1].range(k1,k1));
s++;
k1++;
continue;
}
if(k1==s1){
d1[i][s] = d1[i2][k2];
w[i].add(s,w[i2].range(k2,k2));
s++;
k2++;
continue;
}
if(d1[i1][k1] < d1[i2][k2]){
d1[i][s] = d1[i1][k1];
w[i].add(s,w[i1].range(k1,k1));
s++;
k1++;
continue;
}
else{
d1[i][s] = d1[i2][k2];
w[i].add(s,w[i2].range(k2,k2));
s++;
k2++;
continue;
}
}
}
free1d(www);
}
inline void add(T1 x, T2 y, S v){
int a;
int b;
int z;
a = lower_bound(d2, d2+N, y) - d2;
b = upper_bound(d2, d2+N, y) - d2;
z = lower_bound(ddd1+a, ddd1+b, x) - ddd1 + N2;
while(z){
a = lower_bound(d1[z], d1[z]+sz[z], x) - d1[z];
w[z].add(a, v);
z /= 2;
}
}
inline S query(T1 x1, T1 x2, T2 y1, T2 y2){
S res = 0;
int a;
int b;
int z1;
int z2;
a = lower_bound(d2, d2+N, y1) - d2 + N2;
b = lower_bound(d2, d2+N, y2) - d2 + N2;
while(a < b){
if(a%2){
z1 = lower_bound(d1[a], d1[a]+sz[a], x1) - d1[a];
z2 = lower_bound(d1[a], d1[a]+sz[a], x2) - d1[a];
if(z1 < z2){
res += w[a].range(z1,z2-1);
}
a++;
}
if(b%2){
b--;
z1 = lower_bound(d1[b], d1[b]+sz[b], x1) - d1[b];
z2 = lower_bound(d1[b], d1[b]+sz[b], x2) - d1[b];
if(z1 < z2){
res += w[b].range(z1,z2-1);
}
}
a /= 2;
b /= 2;
}
return res;
}
}
;
long long cReader_ll(long long mn, long long mx, char nx){
int i;
int fg = 0;
int m = 1;
int f = -1;
long long res = 0;
double tmp = 0;
for(;;){
i = my_getchar_unlocked();
if(fg==0 && i=='-'){
fg++;
m = -1;
}
else if('0' <= i && i <= '9'){
fg++;
if(f == -1){
f = i - '0';
}
res = 10 * res + i - '0';
tmp = 10 * tmp + i - '0';
assert(tmp < 1e20);
}
else{
break;
}
}
assert(tmp / 2 <= res);
assert((m==1 && fg >= 1) || (m==-1 && fg >= 2));
assert(mn <= m * res && m * res <= mx);
assert(!(res == 0 && m == -1));
assert(!(res != 0 && f == 0));
assert(!(res == 0 && fg >= 2));
assert(i == nx);
return m * res;
}
int N;
int A[100000+1];
int v[100000+1];
int ind[100000+1];
fenwick<Modint> f1;
fenwick<Modint> f2;
Comb<Modint> comb;
int solve(){
int Lj4PdHRW;
int i;
int j;
int k;
Modint res = 0;
for(Lj4PdHRW=(0);Lj4PdHRW<(2);Lj4PdHRW++){
for(i=(0);i<(N);i++){
auto RZTsC2BF = ((A[i]));
auto FmcKpFmN = (( i));
v[i]=RZTsC2BF;
ind[i]=FmcKpFmN;
}
sortA_L(N,v,ind);
f1.walloc(N,1);
f2.walloc(N,1);
k = 0;
for(i=(0);i<(N);i++){
while(v[k] < v[i]){
f1.add(ind[k], comb.pw2(ind[k]));
f2.add(ind[k], comb.pw2(N-1-ind[k]));
k++;
}
res += f1.range(0,ind[i]) * f2.range(ind[i],N-1);
}
for(i=(0);i<(N);i++){
A[i] = -A[i];
}
}
return res;
}
int baka(){
int mask;
int s;
int arr[12];
Modint res = 0;
for(mask=(0);mask<(1<<N);mask++){
int i;
s = 0;
for(i=(0);i<(N);i++){
if(((mask) &(1<<(i)))){
arr[s++] = A[i];
}
}
for(i=(1);i<(s-1);i++){
if(arr[i-1] < arr[i] && arr[i] > arr[i+1]){
res++;
}
}
for(i=(1);i<(s-1);i++){
if(arr[i-1] > arr[i] && arr[i] < arr[i+1]){
res++;
}
}
}
return res;
}
rangeTree2d<Modint,int,int> t1;
rangeTree2d<Modint,int,int> t2;
int xx[100000];
int yy[100000];
Modint ww[100000];
Modint solve2(){
int i;
Modint res = 0;
for(i=(0);i<(N);i++){
auto XJIcIBrW = ((i));
auto jPV_0s1p = (( A[i]));
auto BUotOFBp = (( comb.pw2(i)));
xx[i]=XJIcIBrW;
yy[i]=jPV_0s1p;
ww[i]=BUotOFBp;
}
t1.build(N,xx,yy,ww);
reverse(ww,ww+N);
t2.build(N,xx,yy,ww);
for(i=(0);i<(N);i++){
res += t1.query(0,i,A[i]+1,1073709056) * t2.query(i+1,N,A[i]+1,1073709056);
res += t1.query(0,i,0,A[i]) * t2.query(i+1,N,0,A[i]);
}
return res;
}
template<class S, class T1, class T2> void offlineSumRangeTree2d(int N, T1 D1[], T2 D2[], S W[], int Q, T1 X1[], T1 X2[], T2 Y1[], T2 Y2[], S res[],
    void *mem = wmem){
int i;
int k;
int sz;
int*dd1;
int*xx1;
int*xx2;
T2*yy;
int*ind;
fenwick<S> f;
for(i=(0);i<(Q);i++){
res[i] = 0;
}
walloc1d(&dd1, N, &mem);
walloc1d(&xx1, Q, &mem);
walloc1d(&xx2, Q, &mem);
walloc1d(&yy, N+Q+Q, &mem);
walloc1d(&ind, N+Q+Q, &mem);
sz =coordcomp_L(N, D1, Q, X1, Q, X2, dd1, xx1, xx2, mem);
f.walloc(sz, 1, &mem);
for(i=(0);i<(Q);i++){
ind[i] = i;
yy[i] = Y1[i];
}
for(i=(0);i<(Q);i++){
ind[Q+i] = Q+i;
yy[Q+i] = Y2[i];
}
for(i=(0);i<(N);i++){
ind[Q+Q+i] = Q+Q+i;
yy[Q+Q+i] = D2[i];
}
sortA_L(N+Q+Q, yy, ind, mem);
for(i=(0);i<(N+Q+Q);i++){
if(ind[i] < Q){
k = ind[i];
if(xx1[k] >= xx2[k] || Y1[k] >= Y2[k]){
continue;
}
res[k] -= f.range(xx1[k], xx2[k]-1);
}
else if(ind[i] < Q + Q){
k = ind[i] - Q;
if(xx1[k] >= xx2[k] || Y1[k] >= Y2[k]){
continue;
}
res[k] += f.range(xx1[k], xx2[k]-1);
}
else{
k = ind[i] - Q - Q;
f.add(dd1[k], W[k]);
}
}
}
int q;
int xx1[400000];
int yy1[400000];
int xx2[400000];
int yy2[400000];
Modint rrr[400000];
Modint solve3(){
int i;
Modint res = 0;
for(i=(0);i<(N);i++){
auto o3WxPXbE = ((0));
auto lQU550vz = (( i));
auto qE8LMwYZ = (( A[i]+1));
auto dKuENJNI = (( 1073709056));
xx1[i+0*N]=o3WxPXbE;
xx2[i+0*N]=lQU550vz;
yy1[i+0*N]=qE8LMwYZ;
yy2[i+0*N]=dKuENJNI;
}
for(i=(0);i<(N);i++){
auto XNa8avth = ((0));
auto mlGkBPoR = (( i));
auto YlLMHsfa = (( 0));
auto sMcf5Tpe = (( A[i]));
xx1[i+1*N]=XNa8avth;
xx2[i+1*N]=mlGkBPoR;
yy1[i+1*N]=YlLMHsfa;
yy2[i+1*N]=sMcf5Tpe;
}
for(i=(0);i<(N);i++){
auto KaFyNJB9 = ((i+1));
auto AAsEZMFe = (( N));
auto xtzQOlbs = (( A[i]+1));
auto aFgbOQYS = (( 1073709056));
xx1[i+2*N]=KaFyNJB9;
xx2[i+2*N]=AAsEZMFe;
yy1[i+2*N]=xtzQOlbs;
yy2[i+2*N]=aFgbOQYS;
}
for(i=(0);i<(N);i++){
auto IlgsnSAd = ((i+1));
auto jG1yfsum = (( N));
auto NLJcSLph = (( 0));
auto Wu3kZ3t7 = (( A[i]));
xx1[i+3*N]=IlgsnSAd;
xx2[i+3*N]=jG1yfsum;
yy1[i+3*N]=NLJcSLph;
yy2[i+3*N]=Wu3kZ3t7;
}
for(i=(0);i<(N);i++){
auto grBCmONb = ((i));
auto WZu7joIG = (( A[i]));
auto Wv3_QJ0O = (( comb.pw2(i)));
xx[i]=grBCmONb;
yy[i]=WZu7joIG;
ww[i]=Wv3_QJ0O;
}
offlineSumRangeTree2d(N, xx, yy, ww, 2*N, xx1, xx2, yy1, yy2, rrr);
reverse(ww,ww+N);
offlineSumRangeTree2d(N, xx, yy, ww, 2*N, xx1+2*N, xx2+2*N, yy1+2*N, yy2+2*N, rrr+2*N);
for(i=(0);i<(N);i++){
res += rrr[i+0*N] * rrr[i+2*N];
res += rrr[i+1*N] * rrr[i+3*N];
}
return res;
}
int main(){
int dtztiDQx;
wmem = memarr;
int i;
int j;
int k;
Modint res = 0;
N = cReader_ll(1, 100000, '\n');
for(i=(0);i<(N);i++){
if(i<N-1){
A[i] = cReader_ll(1, 1000000000,' ');
}
else{
A[i] = cReader_ll(1, 1000000000,'\n');
}
}
wt_L(solve3());
wt_L('\n');
return 0;
for(dtztiDQx=(0);dtztiDQx<(2);dtztiDQx++){
for(i=(0);i<(N);i++){
auto memzHCbB = ((A[i]));
auto mRLrOZDI = (( i));
v[i]=memzHCbB;
ind[i]=mRLrOZDI;
}
sortA_L(N,v,ind);
f1.walloc(N,1);
f2.walloc(N,1);
k = 0;
for(i=(0);i<(N);i++){
while(v[k] < v[i]){
f1.add(ind[k], comb.pw2(ind[k]));
f2.add(ind[k], comb.pw2(N-1-ind[k]));
k++;
}
res += f1.range(0,ind[i]) * f2.range(ind[i],N-1);
}
for(i=(0);i<(N);i++){
A[i] = -A[i];
}
}
wt_L(res);
wt_L('\n');
return 0;
}
template<class T> void fenwick<T>::malloc(int mem){
memory = mem;
data = (T*)std::malloc(sizeof(T)*mem);
}
template<class T> void fenwick<T>::malloc(int mem, int fg){
memory = mem;
data = (T*)std::malloc(sizeof(T)*mem);
if(fg){
init(mem);
}
}
template<class T> void fenwick<T>::walloc(int mem, void **workMemory /* = &wmem*/){
memory = mem;
walloc1d(&data, mem, workMemory);
}
template<class T> void fenwick<T>::walloc(int mem, int fg, void **workMemory /* = &wmem*/){
memory = mem;
walloc1d(&data, mem, workMemory);
if(fg){
init(mem);
}
}
template<class T> void fenwick<T>::free(void){
memory = 0;
free(data);
}
template<class T> void fenwick<T>::init(int N){
size = N;
memset(data,0,sizeof(T)*N);
}
template<class T> void fenwick<T>::add(int k, T val){
while(k < size){
data[k] += val;
k |= k+1;
}
}
template<class T> T fenwick<T>::get(int k){
T res = 0;
while(k>=0){
res += data[k];
k = (k&(k+1))-1;
}
return res;
}
template<class T> T fenwick<T>::range(int a, int b){
if(a < 0){
a = 0;
}
if(b >= size){
b = size - 1;
}
if(b < a){
return 0;
}
return get(b) - get(a-1);
}
template<class T> int fenwick<T>::kth(T k){
int i=0;
int j=size;
int c;
T v;
while(i<j){
c = (i+j)/2;
v = get(c);
if(v <= k){
i=c+1;
}
else{
j=c;
}
}
return i==size?-1:i;
}
// cLay version 20210819-1 [beta]
// --- original code ---
// //working_memory=300m
// int N, A[1d5+1], v[], ind[];
// fenwick<Modint> f1, f2;
// Comb<Modint> comb;
//
// int solve(){
// int i, j, k;
// Modint res = 0;
// rep(2){
// rep(i,N) (v[i], ind[i]) = (A[i], i);
// sortA(N,v,ind);
//
// f1.walloc(N,1);
// f2.walloc(N,1);
//
// k = 0;
// rep(i,N){
// while(v[k] < v[i]){
// f1.add(ind[k], comb.pw2(ind[k]));
// f2.add(ind[k], comb.pw2(N-1-ind[k]));
// k++;
// }
// res += f1.range(0,ind[i]) * f2.range(ind[i],N-1);
// }
//
// rep(i,N) A[i] = -A[i];
// }
// return res;
// }
//
// int baka(){
// int s, arr[12];
// Modint res = 0;
//
// rep(mask,1<<N){
// s = 0;
// rep(i,N) if(BIT_ith(mask,i)) arr[s++] = A[i];
// rep(i,1,s-1) if(arr[i-1] < arr[i] && arr[i] > arr[i+1]) res++;
// rep(i,1,s-1) if(arr[i-1] > arr[i] && arr[i] < arr[i+1]) res++;
// }
//
// return res;
// }
//
// rangeTree2d<Modint,int,int> t1, t2;
// int xx[1d5], yy[1d5]; Modint ww[1d5];
// Modint solve2(){
// Modint res = 0;
// rep(i,N) (xx[i], yy[i], ww[i]) = (i, A[i], comb.pw2(i));
// t1.build(N,xx,yy,ww);
// reverse(ww,ww+N);
// t2.build(N,xx,yy,ww);
// rep(i,N){
// res += t1.query(0,i,A[i]+1,int_inf) * t2.query(i+1,N,A[i]+1,int_inf);
// res += t1.query(0,i,0,A[i]) * t2.query(i+1,N,0,A[i]);
// }
// return res;
// }
//
//
//
// template<class S, class T1, class T2>
// void offlineSumRangeTree2d(int N, T1 D1[], T2 D2[], S W[], int Q, T1 X1[], T1 X2[], T2 Y1[], T2 Y2[], S res[], void *mem = wmem){
// int i, k;
// int sz, *dd1, *xx1, *xx2;
// T2 *yy; int *ind;
// fenwick<S> f;
//
// rep(i,Q) res[i] = 0;
//
// walloc1d(&dd1, N, &mem);
// walloc1d(&xx1, Q, &mem);
// walloc1d(&xx2, Q, &mem);
// walloc1d(&yy, N+Q+Q, &mem);
// walloc1d(&ind, N+Q+Q, &mem);
// sz = coordcomp(N, D1, Q, X1, Q, X2, dd1, xx1, xx2, mem);
//
// f.walloc(sz, 1, &mem);
// rep(i,Q) ind[i] = i, yy[i] = Y1[i];
// rep(i,Q) ind[Q+i] = Q+i, yy[Q+i] = Y2[i];
// rep(i,N) ind[Q+Q+i] = Q+Q+i, yy[Q+Q+i] = D2[i];
// sortA(N+Q+Q, yy, ind, mem);
//
// rep(i,N+Q+Q){
// if(ind[i] < Q){
// k = ind[i];
// if(xx1[k] >= xx2[k] || Y1[k] >= Y2[k]) continue;
// res[k] -= f.range(xx1[k], xx2[k]-1);
// } else if(ind[i] < Q + Q){
// k = ind[i] - Q;
// if(xx1[k] >= xx2[k] || Y1[k] >= Y2[k]) continue;
// res[k] += f.range(xx1[k], xx2[k]-1);
// } else {
// k = ind[i] - Q - Q;
// f.add(dd1[k], W[k]);
// }
// }
// }
//
//
// int q, xx1[4d5], yy1[], xx2[], yy2[]; Modint rrr[];
// Modint solve3(){
// Modint res = 0;
// rep(i,N) (xx1[i+0*N], xx2[i+0*N], yy1[i+0*N], yy2[i+0*N]) = (0, i, A[i]+1, int_inf);
// rep(i,N) (xx1[i+1*N], xx2[i+1*N], yy1[i+1*N], yy2[i+1*N]) = (0, i, 0, A[i]);
// rep(i,N) (xx1[i+2*N], xx2[i+2*N], yy1[i+2*N], yy2[i+2*N]) = (i+1, N, A[i]+1, int_inf);
// rep(i,N) (xx1[i+3*N], xx2[i+3*N], yy1[i+3*N], yy2[i+3*N]) = (i+1, N, 0, A[i]);
//
// rep(i,N) (xx[i], yy[i], ww[i]) = (i, A[i], comb.pw2(i));
// offlineSumRangeTree2d(N, xx, yy, ww, 2*N, xx1, xx2, yy1, yy2, rrr);
// reverse(ww,ww+N);
// offlineSumRangeTree2d(N, xx, yy, ww, 2*N, xx1+2*N, xx2+2*N, yy1+2*N, yy2+2*N, rrr+2*N);
// rep(i,N){
// res += rrr[i+0*N] * rrr[i+2*N];
// res += rrr[i+1*N] * rrr[i+3*N];
// }
// return res;
// }
//
// {
// int i, j, k;
// Modint res = 0;
// N = cReader_ll(1, 1d5, '\n');
// rep(i,N) A[i] = cReader_ll(1, 1d9, if[i<N-1, ' ', '\n']);
//
// wt(solve3());
// return 0;
//
// // Rand rnd;
// // for(;;){
// // int res1, res2;
// // void *mem = wmem;
// // N = rnd.get(1,11);
// // rep(i,N) A[i] = rnd.get(1,10);
// // res1 = solve();
// // res2 = baka();
// // printf("%d %d %d\n",N,res1,res2);
// // assert(res1==res2);
// // wmem = mem;
// // }
//
// rep(2){
// rep(i,N) (v[i], ind[i]) = (A[i], i);
// sortA(N,v,ind);
//
// f1.walloc(N,1);
// f2.walloc(N,1);
//
// k = 0;
// rep(i,N){
// while(v[k] < v[i]){
// f1.add(ind[k], comb.pw2(ind[k]));
// f2.add(ind[k], comb.pw2(N-1-ind[k]));
// k++;
// }
// res += f1.range(0,ind[i]) * f2.range(ind[i],N-1);
// }
//
// rep(i,N) A[i] = -A[i];
// }
//
// wt(res);
// }
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0