結果
問題 | No.42 貯金箱の溜息 |
ユーザー | vwxyz |
提出日時 | 2021-08-21 07:40:23 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 754 ms / 5,000 ms |
コード長 | 20,417 bytes |
コンパイル時間 | 162 ms |
コンパイル使用メモリ | 14,720 KB |
実行使用メモリ | 13,952 KB |
最終ジャッジ日時 | 2024-10-14 16:19:18 |
合計ジャッジ時間 | 3,864 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 754 ms
13,824 KB |
testcase_01 | AC | 736 ms
13,952 KB |
testcase_02 | AC | 741 ms
13,952 KB |
ソースコード
import bisect import copy import decimal import fractions import functools import heapq import itertools import math import random import sys from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import degrees, gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines def Extended_Euclid(n,m): stack=[] while m: stack.append((n,m)) n,m=m,n%m if n>=0: x,y=1,0 else: x,y=-1,0 for i in range(len(stack)-1,-1,-1): n,m=stack[i] x,y=y,x-(n//m)*y return x,y class MOD: def __init__(self,mod): self.mod=mod def Pow(self,a,n): a%=self.mod if n>=0: return pow(a,n,self.mod) else: assert math.gcd(a,self.mod)==1 x=Extended_Euclid(a,self.mod)[0] return pow(x,-n,self.mod) def Build_Fact(self,N): assert N>=0 self.factorial=[1] for i in range(1,N+1): self.factorial.append((self.factorial[-1]*i)%self.mod) self.factorial_inv=[None]*(N+1) self.factorial_inv[-1]=self.Pow(self.factorial[-1],-1) for i in range(N-1,-1,-1): self.factorial_inv[i]=(self.factorial_inv[i+1]*(i+1))%self.mod return self.factorial_inv def Fact(self,N): return self.factorial[N] def Fact_Inv(self,N): return self.factorial_inv[N] def Comb(self,N,K): if K<0 or K>N: return 0 s=self.factorial[N] s=(s*self.factorial_inv[K])%self.mod s=(s*self.factorial_inv[N-K])%self.mod return s class Lagrange_Interpolation: def __init__(self,X=False,Y=False,x0=None,xd=None,mod=0): self.degree=len(Y)-1 self.mod=mod assert self.degree<self.mod if x0!=None and xd!=None: assert xd>0 self.X=[(x0+i*xd)%self.mod for i in range(self.degree+1)] fact_inve=1 for i in range(1,self.degree+1): fact_inve*=i*xd fact_inve%=self.mod fact_inve=MOD(self.mod).Pow(fact_inve,-1) self.coefficient=[y for y in Y] for i in range(self.degree-1,-1,-2): self.coefficient[i]*=-1 for i in range(self.degree,-1,-1): self.coefficient[i]*=fact_inve self.coefficient[i]%=self.mod self.coefficient[self.degree-i]*=fact_inve self.coefficient[self.degree-i]%=self.mod fact_inve*=i*xd fact_inve%=self.mod else: self.X=X assert len(self.X)==self.degree+1 self.coefficient=[y for y in Y] for i in range(self.degree+1): for j in range(self.degree+1): if i==j: continue self.coefficient[i]*=X[i]-X[j] self.coefficient%=self.mod def __getitem__(self,N): N%=self.mod XX=[N-x for x in self.X] XX_left=[1]*(self.degree+2) for i in range(1,self.degree+2): XX_left[i]=XX_left[i-1]*XX[i-1]%self.mod XX_right=[1]*(self.degree+2) for i in range(self.degree,-1,-1): XX_right[i]=XX_right[i+1]*XX[i]%self.mod return sum(XX_left[i]*XX_right[i+1]*self.coefficient[i] for i in range(self.degree+1))%self.mod def NTT(polynomial1,polynomial2): prim_root=3 prim_root_inve=MOD(mod).Pow(prim_root,-1) def DFT(polynomial,inverse=False): dft=polynomial+[0]*((1<<n)-len(polynomial)) if inverse: for bit in range(1,n+1): a=1<<bit-1 x=pow(prim_root,mod-1>>bit,mod) U=[1] for _ in range(a): U.append(U[-1]*x%mod) for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a dft[s],dft[t]=(dft[s]+dft[t]*U[j])%mod,(dft[s]-dft[t]*U[j])%mod else: for bit in range(n,0,-1): a=1<<bit-1 x=pow(prim_root_inve,mod-1>>bit,mod) U=[1] for _ in range(a): U.append(U[-1]*x%mod) for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a dft[s],dft[t]=(dft[s]+dft[t])%mod,U[j]*(dft[s]-dft[t])%mod return dft N=len(polynomial1)+len(polynomial2)-1 n=(N-1).bit_length() ntt=[x*y%mod for x,y in zip(DFT(polynomial1),DFT(polynomial2))] ntt=DFT(ntt,inverse=True) x=pow((mod+1)//2,n) ntt=[ntt[i]*x%mod for i in range(N)] return ntt def FFT(polynomial1,polynomial2,digit=10**5): def DFT(polynomial,n,inverse=False): N=len(polynomial) if inverse: primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)] else: primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)] dft=polynomial+[0]*((1<<n)-N) if inverse: for bit in range(1,n+1): a=1<<bit-1 for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a dft[s],dft[t]=dft[s]+dft[t]*primitive_root[j<<n-bit],dft[s]-dft[t]*primitive_root[j<<n-bit] else: for bit in range(n,0,-1): a=1<<bit-1 for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a dft[s],dft[t]=dft[s]+dft[t],primitive_root[j<<n-bit]*(dft[s]-dft[t]) return dft def FFT_(polynomial1,polynomial2): N1=len(polynomial1) N2=len(polynomial2) N=N1+N2-1 n=(N-1).bit_length() fft=[x*y for x,y in zip(DFT(polynomial1,n),DFT(polynomial2,n))] fft=DFT(fft,n,inverse=True) fft=[round((fft[i]/(1<<n)).real) for i in range(N)] return fft N1=len(polynomial1) N2=len(polynomial2) N=N1+N2-1 polynomial11,polynomial12=[None]*N1,[None]*N1 polynomial21,polynomial22=[None]*N2,[None]*N2 for i in range(N1): polynomial11[i],polynomial12[i]=divmod(polynomial1[i],digit) for i in range(N2): polynomial21[i],polynomial22[i]=divmod(polynomial2[i],digit) polynomial=[0]*(N) a=digit**2-digit for i,x in enumerate(FFT_(polynomial11,polynomial21)): polynomial[i]+=x*a a=digit-1 for i,x in enumerate(FFT_(polynomial12,polynomial22)): polynomial[i]-=x*a for i,x in enumerate(FFT_([x1+x2 for x1,x2 in zip(polynomial11,polynomial12)],[x1+x2 for x1,x2 in zip(polynomial21,polynomial22)])): polynomial[i]+=x*digit return polynomial def Primitive_Root(p): if p==2: return 1 if p==167772161: return 3 if p==469762049: return 3 if p==754974721: return 11 if p==998244353: return 3 if p==10**9+7: return 5 divisors=[2] pp=(p-1)//2 while pp%2==0: pp//=2 for d in range(3,pp+1,2): if d**2>pp: break if pp%d==0: divisors.append(d) while pp%d==0: pp//=d if pp>1: divisors.append(pp) primitive_root=2 while True: for d in divisors: if pow(primitive_root,(p-1)//d,p)==1: break else: return primitive_root primitive_root+=1 class Polynomial: def __init__(self,polynomial,max_degree=-1,eps=1e-12,mod=0): self.max_degree=max_degree if self.max_degree!=-1 and len(polynomial)>self.max_degree+1: self.polynomial=polynomial[:self.max_degree+1] else: self.polynomial=polynomial self.mod=mod self.eps=eps def __eq__(self,other): if type(other)!=Polynomial: return False if len(self.polynomial)!=len(other.polynomial): return False for i in range(len(self.polynomial)): if abs(self.polynomial[i]-other.polynomial[i])>self.eps: return False return True def __ne__(self,other): if type(other)!=Polynomial: return True if len(self.polynomial)!=len(other.polynomial): return True for i in range(len(self.polynomial)): if abs(self.polynomial[i]-other.polynomial[i])>self.eps: return True return False def __add__(self,other): assert type(other)==Polynomial summ=[0]*max(len(self.polynomial),len(other.polynomial)) for i in range(len(self.polynomial)): summ[i]+=self.polynomial[i] for i in range(len(other.polynomial)): summ[i]+=other.polynomial[i] if self.mod: for i in range(len(summ)): summ[i]%=self.mod while summ and abs(summ[-1])<self.eps: summ.pop() summ=Polynomial(summ,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return summ def __sub__(self,other): assert type(other)==Polynomial diff=[0]*max(len(self.polynomial),len(other.polynomial)) for i in range(len(self.polynomial)): diff[i]+=self.polynomial[i] for i in range(len(other.polynomial)): diff[i]-=other.polynomial[i] if self.mod: for i in range(len(diff)): diff[i]%=self.mod while diff and abs(diff[-1])<self.eps: diff.pop() diff=Polynomial(diff,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return diff def __mul__(self,other): if type(other)==Polynomial: if self.max_degree==-1: prod=[0]*(len(self.polynomial)+len(other.polynomial)-1) for i in range(len(self.polynomial)): for j in range(len(other.polynomial)): prod[i+j]+=self.polynomial[i]*other.polynomial[j] else: prod=[0]*min(len(self.polynomial)+len(other.polynomial)-1,self.max_degree+1) for i in range(len(self.polynomial)): for j in range(min(len(other.polynomial),self.max_degree+1-i)): prod[i+j]+=self.polynomial[i]*other.polynomial[j] if self.mod: for i in range(len(prod)): prod[i]%=self.mod while prod and abs(prod[-1])<self.eps: prod.pop() else: if self.mod: prod=[x*other%self.mod for x in self.polynomial] else: prod=[x*other for x in self.polynomial] while prod and abs(prod[-1])<self.eps: prod.pop() prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return prod def __matmul__(self,other): assert type(other)==Polynomial if self.mod: prod=NTT(self.polynomial,other.polynomial) else: prod=FFT(self.polynomial,other.polynomial) if self.max_degree!=-1 and len(prod)>self.max_degree+1: prod=prod[:self.max_degree+1] while prod and abs(prod[-1])<self.eps: prod.pop() prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return prod def __truediv__(self,other): if type(other)==Polynomial: assert other.polynomial for n in range(len(other.polynomial)): if self.eps<abs(other.polynomial[n]): break assert len(self.polynomial)>n for i in range(n): assert abs(self.polynomial[i])<self.eps self_polynomial=self.polynomial[n:] other_polynomial=other.polynomial[n:] if self.mod: inve=MOD(self.mod).Pow(other_polynomial[0],-1) else: inve=1/other_polynomial[0] quot=[] for i in range(len(self_polynomial)-len(other_polynomial)+1): if self.mod: quot.append(self_polynomial[i]*inve%self.mod) else: quot.append(self_polynomial[i]*inve) for j in range(len(other_polynomial)): self_polynomial[i+j]-=other_polynomial[j]*quot[-1] if self.mod: self_polynomial[i+j]%=self.mod for i in range(len(self_polynomial)-len(other_polynomial)+1,len(self_polynomial)): if self.eps<abs(self_polynomial[i]): assert self.max_degree!=-1 self_polynomial=self_polynomial[-len(other_polynomial)+1:] while len(quot)<=self.max_degree: self_polynomial.append(0) if self.mod: quot.append(self_polynomial[0]*inve%self.mod) self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1])%self.mod for i in range(1,len(self_polynomial))] else: quot.append(self_polynomial[0]*inve) self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1]) for i in range(1,len(self_polynomial))] break quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod) else: assert self.eps<abs(other) if self.mod: inve=MOD(self.mod).Pow(other,-1) quot=Polynomial([x*inve%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) else: quot=Polynomial([x/other for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) return quot def __floordiv__(self,other): assert type(other)==Polynomial quot=[0]*(len(self.polynomial)-len(other.polynomial)+1) rema=[x for x in self.polynomial] if self.mod: inve=MOD(self.mod).Pow(other.polynomial[-1],-1) for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] rema[i+j]%=self.mod else: inve=1/other.polynomial[-1] for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return quot def __mod__(self,other): assert type(other)==Polynomial quot=[0]*(len(self.polynomial)-len(other.polynomial)+1) rema=[x for x in self.polynomial] if self.mod: inve=MOD(self.mod).Pow(other.polynomial[-1],-1) for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] rema[i+j]%=self.mod rema.pop() else: inve=1/other.polynomial[-1] for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] rema.pop() rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return rema def __divmod__(self,other): assert type(other)==Polynomial quot=[0]*(len(self.polynomial)-len(other.polynomial)+1) rema=[x for x in self.polynomial] if self.mod: inve=MOD(self.mod).Pow(other.polynomial[-1],-1) for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] rema[i+j]%=self.mod rema.pop() else: inve=1/other.polynomial[-1] for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] rema.pop() quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod) rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return quot,rema def __neg__(self): if self.mod: nega=Polynomial([(-x)%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) else: nega=Polynomial([-x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) return nega def __pos__(self): posi=Polynomial([x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) return posi def __bool__(self): return self.polynomial def __getitem__(self,n): if n<=len(self.polynomial)-1: return self.polynomial[n] else: return 0 def __setitem__(self,n,x): if self.mod: x%=self.mod if self.max_degree==-1 or n<=self.max_degree: if n<=len(self.polynomial)-1: self.polynomial[n]=x elif self.eps<abs(x): self.polynomial+=[0]*(n-len(self.polynomial))+[x] def __call__(self,x): retu=0 pow_x=1 for i in range(len(self.polynomial)): retu+=pow_x*self.polynomial[i] pow_x*=x if self.mod: retu%=self.mod pow_x%=self.mod return retu def __str__(self): return "["+", ".join(map(str,self.polynomial))+"]" def Bostan_Mori(poly_deno,poly_nume,N,mod=0,fft=False,ntt=False): if type(poly_deno)==Polynomial: poly_deno=poly_deno.polynomial if type(poly_nume)==Polynomial: poly_nume=poly_nume.polynomial if ntt: convolve=NTT elif fft: convolve=FFT else: def convolve(poly_deno,poly_nume): conv=[0]*(len(poly_deno)+len(poly_nume)-1) for i in range(len(poly_deno)): for j in range(len(poly_nume)): conv[i+j]+=poly_deno[i]*poly_nume[j] if mod: for i in range(len(conv)): conv[i]%=mod return conv while N: poly_nume_=[-x if i%2 else x for i,x in enumerate(poly_nume)] if N%2: poly_deno=convolve(poly_deno,poly_nume_)[1::2] else: poly_deno=convolve(poly_deno,poly_nume_)[::2] poly_nume=convolve(poly_nume,poly_nume_)[::2] if fft and mod: for i in range(len(poly_deno)): poly_deno[i]%=mod for i in range(len(poly_nume)): poly_nume[i]%=mod N//=2 return poly_deno[0] mod=10**9+9 P=Polynomial([1],max_degree=3000-1,mod=mod) for money in (1,5,10,50,100,500): lst=[0]*(money+1) lst[0]=1 lst[money]=-1 P/=Polynomial(lst) T=int(readline()) for _ in range(T): M=int(readline()) r=M%500 Y=[P[i] for i in range(r,3000,500)] LI=Lagrange_Interpolation(Y=Y,x0=r,xd=500,mod=mod) ans=LI[M] print(ans)