結果

問題 No.42 貯金箱の溜息
ユーザー vwxyzvwxyz
提出日時 2021-08-21 07:48:05
言語 Python3
(3.11.6 + numpy 1.26.0 + scipy 1.11.3)
結果
AC  
実行時間 123 ms / 5,000 ms
コード長 20,491 bytes
コンパイル時間 451 ms
コンパイル使用メモリ 13,056 KB
実行使用メモリ 12,952 KB
最終ジャッジ日時 2023-08-04 19:14:25
合計ジャッジ時間 1,246 ms
ジャッジサーバーID
(参考情報)
judge13 / judge12
このコードへのチャレンジ(β)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 118 ms
12,952 KB
testcase_01 AC 123 ms
12,852 KB
testcase_02 AC 123 ms
12,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import bisect
import copy
import decimal
import fractions
import functools
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
    heap.append(item)
    heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
    if heap and item < heap[0]:
        item, heap[0] = heap[0], item
        heapq._siftup_max(heap, 0)
    return item
from math import degrees, gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines

def Extended_Euclid(n,m):
    stack=[]
    while m:
        stack.append((n,m))
        n,m=m,n%m
    if n>=0:
        x,y=1,0
    else:
        x,y=-1,0
    for i in range(len(stack)-1,-1,-1):
        n,m=stack[i]
        x,y=y,x-(n//m)*y
    return x,y

class MOD:
    def __init__(self,mod):
        self.mod=mod

    def Pow(self,a,n):
        a%=self.mod
        if n>=0:
            return pow(a,n,self.mod)
        else:
            assert math.gcd(a,self.mod)==1
            x=Extended_Euclid(a,self.mod)[0]
            return pow(x,-n,self.mod)

    def Build_Fact(self,N):
        assert N>=0
        self.factorial=[1]
        for i in range(1,N+1):
            self.factorial.append((self.factorial[-1]*i)%self.mod)
        self.factorial_inv=[None]*(N+1)
        self.factorial_inv[-1]=self.Pow(self.factorial[-1],-1)
        for i in range(N-1,-1,-1):
            self.factorial_inv[i]=(self.factorial_inv[i+1]*(i+1))%self.mod
        return self.factorial_inv

    def Fact(self,N):
        return self.factorial[N]

    def Fact_Inv(self,N):
        return self.factorial_inv[N]

    def Comb(self,N,K):
        if K<0 or K>N:
            return 0
        s=self.factorial[N]
        s=(s*self.factorial_inv[K])%self.mod
        s=(s*self.factorial_inv[N-K])%self.mod
        return s

class Lagrange_Interpolation:
    def __init__(self,X=False,Y=False,x0=None,xd=None,mod=0):
        self.degree=len(Y)-1
        self.mod=mod
        assert self.degree<self.mod
        if x0!=None and xd!=None:
            assert xd>0
            self.X=[(x0+i*xd)%self.mod for i in range(self.degree+1)]
            fact_inve=1
            for i in range(1,self.degree+1):
                fact_inve*=i*xd
                fact_inve%=self.mod
            fact_inve=MOD(self.mod).Pow(fact_inve,-1)
            self.coefficient=[y for y in Y]
            for i in range(self.degree-1,-1,-2):
                self.coefficient[i]*=-1
            for i in range(self.degree,-1,-1):
                self.coefficient[i]*=fact_inve
                self.coefficient[i]%=self.mod
                self.coefficient[self.degree-i]*=fact_inve
                self.coefficient[self.degree-i]%=self.mod
                fact_inve*=i*xd
                fact_inve%=self.mod        
        else:
            self.X=X
            assert len(self.X)==self.degree+1
            self.coefficient=[y for y in Y]
            for i in range(self.degree+1):
                for j in range(self.degree+1):
                    if i==j:
                        continue
                    self.coefficient[i]*=X[i]-X[j]
                    self.coefficient%=self.mod

    def __getitem__(self,N):
        N%=self.mod
        XX=[N-x for x in self.X]
        XX_left=[1]*(self.degree+2)
        for i in range(1,self.degree+2):
            XX_left[i]=XX_left[i-1]*XX[i-1]%self.mod
        XX_right=[1]*(self.degree+2)
        for i in range(self.degree,-1,-1):
            XX_right[i]=XX_right[i+1]*XX[i]%self.mod
        return sum(XX_left[i]*XX_right[i+1]*self.coefficient[i] for i in range(self.degree+1))%self.mod

def NTT(polynomial1,polynomial2):
    prim_root=3
    prim_root_inve=MOD(mod).Pow(prim_root,-1)
    def DFT(polynomial,inverse=False):
        dft=polynomial+[0]*((1<<n)-len(polynomial))
        if inverse:
            for bit in range(1,n+1):
                a=1<<bit-1
                x=pow(prim_root,mod-1>>bit,mod)
                U=[1]
                for _ in range(a):
                    U.append(U[-1]*x%mod)
                for i in range(1<<n-bit):
                    for j in range(a):
                        s=i*2*a+j
                        t=s+a
                        dft[s],dft[t]=(dft[s]+dft[t]*U[j])%mod,(dft[s]-dft[t]*U[j])%mod
        else:
            for bit in range(n,0,-1):
                a=1<<bit-1
                x=pow(prim_root_inve,mod-1>>bit,mod)
                U=[1]
                for _ in range(a):
                    U.append(U[-1]*x%mod)
                for i in range(1<<n-bit):
                    for j in range(a):
                        s=i*2*a+j
                        t=s+a
                        dft[s],dft[t]=(dft[s]+dft[t])%mod,U[j]*(dft[s]-dft[t])%mod
        return dft

    N=len(polynomial1)+len(polynomial2)-1
    n=(N-1).bit_length()
    ntt=[x*y%mod for x,y in zip(DFT(polynomial1),DFT(polynomial2))]
    ntt=DFT(ntt,inverse=True)
    x=pow((mod+1)//2,n)
    ntt=[ntt[i]*x%mod for i in range(N)]
    return ntt

def FFT(polynomial1,polynomial2,digit=10**5):
    def DFT(polynomial,n,inverse=False):
        N=len(polynomial)
        if inverse:
            primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
        else:
            primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
        dft=polynomial+[0]*((1<<n)-N)
        if inverse:
            for bit in range(1,n+1):
                a=1<<bit-1
                for i in range(1<<n-bit):
                    for j in range(a):
                        s=i*2*a+j
                        t=s+a
                        dft[s],dft[t]=dft[s]+dft[t]*primitive_root[j<<n-bit],dft[s]-dft[t]*primitive_root[j<<n-bit]
        else:
            for bit in range(n,0,-1):
                a=1<<bit-1
                for i in range(1<<n-bit):
                    for j in range(a):
                        s=i*2*a+j
                        t=s+a
                        dft[s],dft[t]=dft[s]+dft[t],primitive_root[j<<n-bit]*(dft[s]-dft[t])
        return dft
    
    def FFT_(polynomial1,polynomial2):
        N1=len(polynomial1)
        N2=len(polynomial2)
        N=N1+N2-1
        n=(N-1).bit_length()
        fft=[x*y for x,y in zip(DFT(polynomial1,n),DFT(polynomial2,n))]
        fft=DFT(fft,n,inverse=True)
        fft=[round((fft[i]/(1<<n)).real) for i in range(N)]
        return fft
    
    N1=len(polynomial1)
    N2=len(polynomial2)
    N=N1+N2-1
    polynomial11,polynomial12=[None]*N1,[None]*N1
    polynomial21,polynomial22=[None]*N2,[None]*N2
    for i in range(N1):
        polynomial11[i],polynomial12[i]=divmod(polynomial1[i],digit)
    for i in range(N2):
        polynomial21[i],polynomial22[i]=divmod(polynomial2[i],digit)
    polynomial=[0]*(N)
    a=digit**2-digit
    for i,x in enumerate(FFT_(polynomial11,polynomial21)):
        polynomial[i]+=x*a
    a=digit-1
    for i,x in enumerate(FFT_(polynomial12,polynomial22)):
        polynomial[i]-=x*a
    for i,x in enumerate(FFT_([x1+x2 for x1,x2 in zip(polynomial11,polynomial12)],[x1+x2 for x1,x2 in zip(polynomial21,polynomial22)])):
        polynomial[i]+=x*digit
    return polynomial

def Primitive_Root(p):
    if p==2:
        return 1
    if p==167772161:
        return 3
    if p==469762049:
        return 3
    if p==754974721:
        return 11
    if p==998244353:
        return 3
    if p==10**9+7:
        return 5
    divisors=[2]
    pp=(p-1)//2
    while pp%2==0:
        pp//=2
    for d in range(3,pp+1,2):
        if d**2>pp:
            break
        if pp%d==0:
            divisors.append(d)
            while pp%d==0:
                pp//=d
    if pp>1:
        divisors.append(pp)
    primitive_root=2
    while True:
        for d in divisors:
            if pow(primitive_root,(p-1)//d,p)==1:
                break
        else:
            return primitive_root
        primitive_root+=1

class Polynomial:
    def __init__(self,polynomial,max_degree=-1,eps=1e-12,mod=0):
        self.max_degree=max_degree
        if self.max_degree!=-1 and len(polynomial)>self.max_degree+1:
            self.polynomial=polynomial[:self.max_degree+1]
        else:
            self.polynomial=polynomial
        self.mod=mod
        self.eps=eps

    def __eq__(self,other):
        if type(other)!=Polynomial:
            return False
        if len(self.polynomial)!=len(other.polynomial):
            return False
        for i in range(len(self.polynomial)):
            if abs(self.polynomial[i]-other.polynomial[i])>self.eps:
                return False
        return True

    def __ne__(self,other):
        if type(other)!=Polynomial:
            return True
        if len(self.polynomial)!=len(other.polynomial):
            return True
        for i in range(len(self.polynomial)):
            if abs(self.polynomial[i]-other.polynomial[i])>self.eps:
                return True
        return False

    def __add__(self,other):
        assert type(other)==Polynomial
        summ=[0]*max(len(self.polynomial),len(other.polynomial))
        for i in range(len(self.polynomial)):
            summ[i]+=self.polynomial[i]
        for i in range(len(other.polynomial)):
            summ[i]+=other.polynomial[i]
        if self.mod:
            for i in range(len(summ)):
                summ[i]%=self.mod
        while summ and abs(summ[-1])<self.eps:
            summ.pop()
        summ=Polynomial(summ,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return summ

    def __sub__(self,other):
        assert type(other)==Polynomial
        diff=[0]*max(len(self.polynomial),len(other.polynomial))
        for i in range(len(self.polynomial)):
            diff[i]+=self.polynomial[i]
        for i in range(len(other.polynomial)):
            diff[i]-=other.polynomial[i]
        if self.mod:
            for i in range(len(diff)):
                diff[i]%=self.mod
        while diff and abs(diff[-1])<self.eps:
            diff.pop()
        diff=Polynomial(diff,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return diff

    def __mul__(self,other):
        if type(other)==Polynomial:
            if self.max_degree==-1:
                prod=[0]*(len(self.polynomial)+len(other.polynomial)-1)
                for i in range(len(self.polynomial)):
                    for j in range(len(other.polynomial)):
                        prod[i+j]+=self.polynomial[i]*other.polynomial[j]
            else:
                prod=[0]*min(len(self.polynomial)+len(other.polynomial)-1,self.max_degree+1)
                for i in range(len(self.polynomial)):
                    for j in range(min(len(other.polynomial),self.max_degree+1-i)):
                        prod[i+j]+=self.polynomial[i]*other.polynomial[j]
            if self.mod:
                for i in range(len(prod)):
                    prod[i]%=self.mod
            while prod and abs(prod[-1])<self.eps:
                prod.pop()
        else:
            if self.mod:
                prod=[x*other%self.mod for x in self.polynomial]
            else:
                prod=[x*other for x in self.polynomial]
            while prod and abs(prod[-1])<self.eps:
                prod.pop()
        prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return prod

    def __matmul__(self,other):
        assert type(other)==Polynomial
        if self.mod:
            prod=NTT(self.polynomial,other.polynomial)
        else:
            prod=FFT(self.polynomial,other.polynomial)
        if self.max_degree!=-1 and len(prod)>self.max_degree+1:
            prod=prod[:self.max_degree+1]
            while prod and abs(prod[-1])<self.eps:
                prod.pop()
        prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return prod

    def __truediv__(self,other):
        if type(other)==Polynomial:
            assert other.polynomial
            for n in range(len(other.polynomial)):
                if self.eps<abs(other.polynomial[n]):
                    break
            assert len(self.polynomial)>n
            for i in range(n):
                assert abs(self.polynomial[i])<self.eps
            self_polynomial=self.polynomial[n:]
            other_polynomial=other.polynomial[n:]
            if self.mod:
                inve=MOD(self.mod).Pow(other_polynomial[0],-1)
            else:
                inve=1/other_polynomial[0]
            quot=[]
            for i in range(len(self_polynomial)-len(other_polynomial)+1):
                if self.mod:
                    quot.append(self_polynomial[i]*inve%self.mod)
                else:
                    quot.append(self_polynomial[i]*inve)
                for j in range(len(other_polynomial)):
                    self_polynomial[i+j]-=other_polynomial[j]*quot[-1]
                    if self.mod:
                        self_polynomial[i+j]%=self.mod
            for i in range(len(self_polynomial)-len(other_polynomial)+1,len(self_polynomial)):
                if self.eps<abs(self_polynomial[i]):
                    assert self.max_degree!=-1
                    self_polynomial=self_polynomial[-len(other_polynomial)+1:]
                    while len(quot)<=self.max_degree:
                        self_polynomial.append(0)
                        if self.mod:
                            quot.append(self_polynomial[0]*inve%self.mod)
                            self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1])%self.mod for i in range(1,len(self_polynomial))]
                        else:
                            quot.append(self_polynomial[0]*inve)
                            self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1]) for i in range(1,len(self_polynomial))]
                    break
            quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        else:
            assert self.eps<abs(other)
            if self.mod:
                inve=MOD(self.mod).Pow(other,-1)
                quot=Polynomial([x*inve%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
            else:
                quot=Polynomial([x/other for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return quot

    def __floordiv__(self,other):
        assert type(other)==Polynomial
        quot=[0]*(len(self.polynomial)-len(other.polynomial)+1)
        rema=[x for x in self.polynomial]
        if self.mod:
            inve=MOD(self.mod).Pow(other.polynomial[-1],-1)
            for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
                quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod
                for j in range(len(other.polynomial)):
                    rema[i+j]-=quot[i]*other.polynomial[j]
                    rema[i+j]%=self.mod
        else:
            inve=1/other.polynomial[-1]
            for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
                quot[i]=rema[i+len(other.polynomial)-1]*inve
                for j in range(len(other.polynomial)):
                    rema[i+j]-=quot[i]*other.polynomial[j]
        quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return quot

    def __mod__(self,other):
        assert type(other)==Polynomial
        quot=[0]*(len(self.polynomial)-len(other.polynomial)+1)
        rema=[x for x in self.polynomial]
        if self.mod:
            inve=MOD(self.mod).Pow(other.polynomial[-1],-1)
            for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
                quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod
                for j in range(len(other.polynomial)):
                    rema[i+j]-=quot[i]*other.polynomial[j]
                    rema[i+j]%=self.mod
                rema.pop()
        else:
            inve=1/other.polynomial[-1]
            for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
                quot[i]=rema[i+len(other.polynomial)-1]*inve
                for j in range(len(other.polynomial)):
                    rema[i+j]-=quot[i]*other.polynomial[j]
                rema.pop()
        rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return rema

    def __divmod__(self,other):
        assert type(other)==Polynomial
        quot=[0]*(len(self.polynomial)-len(other.polynomial)+1)
        rema=[x for x in self.polynomial]
        if self.mod:
            inve=MOD(self.mod).Pow(other.polynomial[-1],-1)
            for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
                quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod
                for j in range(len(other.polynomial)):
                    rema[i+j]-=quot[i]*other.polynomial[j]
                    rema[i+j]%=self.mod
                rema.pop()
        else:
            inve=1/other.polynomial[-1]
            for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
                quot[i]=rema[i+len(other.polynomial)-1]*inve
                for j in range(len(other.polynomial)):
                    rema[i+j]-=quot[i]*other.polynomial[j]
                rema.pop()
        quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return quot,rema

    def __neg__(self):
        if self.mod:
            nega=Polynomial([(-x)%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        else:
            nega=Polynomial([-x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return nega

    def __pos__(self):
        posi=Polynomial([x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return posi

    def __bool__(self):
        return self.polynomial

    def __getitem__(self,n):
        if n<=len(self.polynomial)-1:
            return self.polynomial[n]
        else:
            return 0

    def __setitem__(self,n,x):
        if self.mod:
            x%=self.mod
        if self.max_degree==-1 or n<=self.max_degree:
            if n<=len(self.polynomial)-1:
                self.polynomial[n]=x
            elif self.eps<abs(x):
                self.polynomial+=[0]*(n-len(self.polynomial))+[x]

    def __call__(self,x):
        retu=0
        pow_x=1
        for i in range(len(self.polynomial)):
            retu+=pow_x*self.polynomial[i]
            pow_x*=x
            if self.mod:
                retu%=self.mod
                pow_x%=self.mod
        return retu

    def __str__(self):
        return "["+", ".join(map(str,self.polynomial))+"]"

def Bostan_Mori(poly_deno,poly_nume,N,mod=0,fft=False,ntt=False):
    if type(poly_deno)==Polynomial:
        poly_deno=poly_deno.polynomial
    if type(poly_nume)==Polynomial:
        poly_nume=poly_nume.polynomial
    if ntt:
        convolve=NTT
    elif fft:
        convolve=FFT
    else:
        def convolve(poly_deno,poly_nume):
            conv=[0]*(len(poly_deno)+len(poly_nume)-1)
            for i in range(len(poly_deno)):
                for j in range(len(poly_nume)):
                    conv[i+j]+=poly_deno[i]*poly_nume[j]
            if mod:
                for i in range(len(conv)):
                    conv[i]%=mod
            return conv
    while N:
        poly_nume_=[-x if i%2 else x for i,x in enumerate(poly_nume)]
        if N%2:
            poly_deno=convolve(poly_deno,poly_nume_)[1::2]
        else:
            poly_deno=convolve(poly_deno,poly_nume_)[::2]
        poly_nume=convolve(poly_nume,poly_nume_)[::2]
        if fft and mod:
            for i in range(len(poly_deno)):
                poly_deno[i]%=mod
            for i in range(len(poly_nume)):
                poly_nume[i]%=mod
        N//=2
    return poly_deno[0]

mod=10**9+9
dp=[0]*3000
dp[0]=1
for money in (1,5,10,50,100,500):
    prev=dp
    dp=[0]*3000
    for i in range(3000):
        if i<money:
            dp[i]=prev[i]
        else:
            dp[i]=(dp[i-money]+prev[i])%mod
LI={r:Lagrange_Interpolation(Y=[dp[i] for i in range(r,3000,500)],x0=r,xd=500,mod=mod) for r in range(500)}
T=int(readline())
for _ in range(T):
    M=int(readline())
    r=M%500
    ans=LI[r][M]
    print(ans)
0