結果

問題 No.42 貯金箱の溜息
ユーザー vwxyzvwxyz
提出日時 2021-08-21 08:00:06
言語 Python3
(3.12.2 + numpy 1.26.4 + scipy 1.12.0)
結果
AC  
実行時間 143 ms / 5,000 ms
コード長 44,980 bytes
コンパイル時間 145 ms
コンパイル使用メモリ 17,408 KB
実行使用メモリ 16,384 KB
最終ジャッジ日時 2024-10-14 16:46:08
合計ジャッジ時間 1,146 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 143 ms
16,384 KB
testcase_01 AC 139 ms
16,384 KB
testcase_02 AC 140 ms
16,384 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import bisect
import copy
import decimal
import fractions
import functools
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
    heap.append(item)
    heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
    if heap and item < heap[0]:
        item, heap[0] = heap[0], item
        heapq._siftup_max(heap, 0)
    return item
from math import degrees, gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines

def Extended_Euclid(n,m):
    stack=[]
    while m:
        stack.append((n,m))
        n,m=m,n%m
    if n>=0:
        x,y=1,0
    else:
        x,y=-1,0
    for i in range(len(stack)-1,-1,-1):
        n,m=stack[i]
        x,y=y,x-(n//m)*y
    return x,y

class MOD:
    def __init__(self,mod):
        self.mod=mod

    def Pow(self,a,n):
        a%=self.mod
        if n>=0:
            return pow(a,n,self.mod)
        else:
            assert math.gcd(a,self.mod)==1
            x=Extended_Euclid(a,self.mod)[0]
            return pow(x,-n,self.mod)

    def Build_Fact(self,N):
        assert N>=0
        self.factorial=[1]
        for i in range(1,N+1):
            self.factorial.append((self.factorial[-1]*i)%self.mod)
        self.factorial_inv=[None]*(N+1)
        self.factorial_inv[-1]=self.Pow(self.factorial[-1],-1)
        for i in range(N-1,-1,-1):
            self.factorial_inv[i]=(self.factorial_inv[i+1]*(i+1))%self.mod
        return self.factorial_inv

    def Fact(self,N):
        return self.factorial[N]

    def Fact_Inv(self,N):
        return self.factorial_inv[N]

    def Comb(self,N,K):
        if K<0 or K>N:
            return 0
        s=self.factorial[N]
        s=(s*self.factorial_inv[K])%self.mod
        s=(s*self.factorial_inv[N-K])%self.mod
        return s

class Lagrange_Interpolation:
    def __init__(self,X=False,Y=False,x0=None,xd=None,mod=0):
        self.degree=len(Y)-1
        self.mod=mod
        assert self.degree<self.mod
        if x0!=None and xd!=None:
            assert xd>0
            self.X=[(x0+i*xd)%self.mod for i in range(self.degree+1)]
            fact_inve=1
            for i in range(1,self.degree+1):
                fact_inve*=i*xd
                fact_inve%=self.mod
            fact_inve=MOD(self.mod).Pow(fact_inve,-1)
            self.coefficient=[y for y in Y]
            for i in range(self.degree-1,-1,-2):
                self.coefficient[i]*=-1
            for i in range(self.degree,-1,-1):
                self.coefficient[i]*=fact_inve
                self.coefficient[i]%=self.mod
                self.coefficient[self.degree-i]*=fact_inve
                self.coefficient[self.degree-i]%=self.mod
                fact_inve*=i*xd
                fact_inve%=self.mod        
        else:
            self.X=X
            assert len(self.X)==self.degree+1
            self.coefficient=[y for y in Y]
            for i in range(self.degree+1):
                for j in range(self.degree+1):
                    if i==j:
                        continue
                    self.coefficient[i]*=X[i]-X[j]
                    self.coefficient%=self.mod

    def __getitem__(self,N):
        N%=self.mod
        XX=[N-x for x in self.X]
        XX_left=[1]*(self.degree+2)
        for i in range(1,self.degree+2):
            XX_left[i]=XX_left[i-1]*XX[i-1]%self.mod
        XX_right=[1]*(self.degree+2)
        for i in range(self.degree,-1,-1):
            XX_right[i]=XX_right[i+1]*XX[i]%self.mod
        return sum(XX_left[i]*XX_right[i+1]*self.coefficient[i] for i in range(self.degree+1))%self.mod

def NTT(polynomial1,polynomial2):
    prim_root=3
    prim_root_inve=MOD(mod).Pow(prim_root,-1)
    def DFT(polynomial,inverse=False):
        dft=polynomial+[0]*((1<<n)-len(polynomial))
        if inverse:
            for bit in range(1,n+1):
                a=1<<bit-1
                x=pow(prim_root,mod-1>>bit,mod)
                U=[1]
                for _ in range(a):
                    U.append(U[-1]*x%mod)
                for i in range(1<<n-bit):
                    for j in range(a):
                        s=i*2*a+j
                        t=s+a
                        dft[s],dft[t]=(dft[s]+dft[t]*U[j])%mod,(dft[s]-dft[t]*U[j])%mod
        else:
            for bit in range(n,0,-1):
                a=1<<bit-1
                x=pow(prim_root_inve,mod-1>>bit,mod)
                U=[1]
                for _ in range(a):
                    U.append(U[-1]*x%mod)
                for i in range(1<<n-bit):
                    for j in range(a):
                        s=i*2*a+j
                        t=s+a
                        dft[s],dft[t]=(dft[s]+dft[t])%mod,U[j]*(dft[s]-dft[t])%mod
        return dft

    N=len(polynomial1)+len(polynomial2)-1
    n=(N-1).bit_length()
    ntt=[x*y%mod for x,y in zip(DFT(polynomial1),DFT(polynomial2))]
    ntt=DFT(ntt,inverse=True)
    x=pow((mod+1)//2,n)
    ntt=[ntt[i]*x%mod for i in range(N)]
    return ntt

def FFT(polynomial1,polynomial2,digit=10**5):
    def DFT(polynomial,n,inverse=False):
        N=len(polynomial)
        if inverse:
            primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
        else:
            primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
        dft=polynomial+[0]*((1<<n)-N)
        if inverse:
            for bit in range(1,n+1):
                a=1<<bit-1
                for i in range(1<<n-bit):
                    for j in range(a):
                        s=i*2*a+j
                        t=s+a
                        dft[s],dft[t]=dft[s]+dft[t]*primitive_root[j<<n-bit],dft[s]-dft[t]*primitive_root[j<<n-bit]
        else:
            for bit in range(n,0,-1):
                a=1<<bit-1
                for i in range(1<<n-bit):
                    for j in range(a):
                        s=i*2*a+j
                        t=s+a
                        dft[s],dft[t]=dft[s]+dft[t],primitive_root[j<<n-bit]*(dft[s]-dft[t])
        return dft
    
    def FFT_(polynomial1,polynomial2):
        N1=len(polynomial1)
        N2=len(polynomial2)
        N=N1+N2-1
        n=(N-1).bit_length()
        fft=[x*y for x,y in zip(DFT(polynomial1,n),DFT(polynomial2,n))]
        fft=DFT(fft,n,inverse=True)
        fft=[round((fft[i]/(1<<n)).real) for i in range(N)]
        return fft
    
    N1=len(polynomial1)
    N2=len(polynomial2)
    N=N1+N2-1
    polynomial11,polynomial12=[None]*N1,[None]*N1
    polynomial21,polynomial22=[None]*N2,[None]*N2
    for i in range(N1):
        polynomial11[i],polynomial12[i]=divmod(polynomial1[i],digit)
    for i in range(N2):
        polynomial21[i],polynomial22[i]=divmod(polynomial2[i],digit)
    polynomial=[0]*(N)
    a=digit**2-digit
    for i,x in enumerate(FFT_(polynomial11,polynomial21)):
        polynomial[i]+=x*a
    a=digit-1
    for i,x in enumerate(FFT_(polynomial12,polynomial22)):
        polynomial[i]-=x*a
    for i,x in enumerate(FFT_([x1+x2 for x1,x2 in zip(polynomial11,polynomial12)],[x1+x2 for x1,x2 in zip(polynomial21,polynomial22)])):
        polynomial[i]+=x*digit
    return polynomial

def Primitive_Root(p):
    if p==2:
        return 1
    if p==167772161:
        return 3
    if p==469762049:
        return 3
    if p==754974721:
        return 11
    if p==998244353:
        return 3
    if p==10**9+7:
        return 5
    divisors=[2]
    pp=(p-1)//2
    while pp%2==0:
        pp//=2
    for d in range(3,pp+1,2):
        if d**2>pp:
            break
        if pp%d==0:
            divisors.append(d)
            while pp%d==0:
                pp//=d
    if pp>1:
        divisors.append(pp)
    primitive_root=2
    while True:
        for d in divisors:
            if pow(primitive_root,(p-1)//d,p)==1:
                break
        else:
            return primitive_root
        primitive_root+=1

class Polynomial:
    def __init__(self,polynomial,max_degree=-1,eps=1e-12,mod=0):
        self.max_degree=max_degree
        if self.max_degree!=-1 and len(polynomial)>self.max_degree+1:
            self.polynomial=polynomial[:self.max_degree+1]
        else:
            self.polynomial=polynomial
        self.mod=mod
        self.eps=eps

    def __eq__(self,other):
        if type(other)!=Polynomial:
            return False
        if len(self.polynomial)!=len(other.polynomial):
            return False
        for i in range(len(self.polynomial)):
            if abs(self.polynomial[i]-other.polynomial[i])>self.eps:
                return False
        return True

    def __ne__(self,other):
        if type(other)!=Polynomial:
            return True
        if len(self.polynomial)!=len(other.polynomial):
            return True
        for i in range(len(self.polynomial)):
            if abs(self.polynomial[i]-other.polynomial[i])>self.eps:
                return True
        return False

    def __add__(self,other):
        assert type(other)==Polynomial
        summ=[0]*max(len(self.polynomial),len(other.polynomial))
        for i in range(len(self.polynomial)):
            summ[i]+=self.polynomial[i]
        for i in range(len(other.polynomial)):
            summ[i]+=other.polynomial[i]
        if self.mod:
            for i in range(len(summ)):
                summ[i]%=self.mod
        while summ and abs(summ[-1])<self.eps:
            summ.pop()
        summ=Polynomial(summ,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return summ

    def __sub__(self,other):
        assert type(other)==Polynomial
        diff=[0]*max(len(self.polynomial),len(other.polynomial))
        for i in range(len(self.polynomial)):
            diff[i]+=self.polynomial[i]
        for i in range(len(other.polynomial)):
            diff[i]-=other.polynomial[i]
        if self.mod:
            for i in range(len(diff)):
                diff[i]%=self.mod
        while diff and abs(diff[-1])<self.eps:
            diff.pop()
        diff=Polynomial(diff,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return diff

    def __mul__(self,other):
        if type(other)==Polynomial:
            if self.max_degree==-1:
                prod=[0]*(len(self.polynomial)+len(other.polynomial)-1)
                for i in range(len(self.polynomial)):
                    for j in range(len(other.polynomial)):
                        prod[i+j]+=self.polynomial[i]*other.polynomial[j]
            else:
                prod=[0]*min(len(self.polynomial)+len(other.polynomial)-1,self.max_degree+1)
                for i in range(len(self.polynomial)):
                    for j in range(min(len(other.polynomial),self.max_degree+1-i)):
                        prod[i+j]+=self.polynomial[i]*other.polynomial[j]
            if self.mod:
                for i in range(len(prod)):
                    prod[i]%=self.mod
            while prod and abs(prod[-1])<self.eps:
                prod.pop()
        else:
            if self.mod:
                prod=[x*other%self.mod for x in self.polynomial]
            else:
                prod=[x*other for x in self.polynomial]
            while prod and abs(prod[-1])<self.eps:
                prod.pop()
        prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return prod

    def __matmul__(self,other):
        assert type(other)==Polynomial
        if self.mod:
            prod=NTT(self.polynomial,other.polynomial)
        else:
            prod=FFT(self.polynomial,other.polynomial)
        if self.max_degree!=-1 and len(prod)>self.max_degree+1:
            prod=prod[:self.max_degree+1]
            while prod and abs(prod[-1])<self.eps:
                prod.pop()
        prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return prod

    def __truediv__(self,other):
        if type(other)==Polynomial:
            assert other.polynomial
            for n in range(len(other.polynomial)):
                if self.eps<abs(other.polynomial[n]):
                    break
            assert len(self.polynomial)>n
            for i in range(n):
                assert abs(self.polynomial[i])<self.eps
            self_polynomial=self.polynomial[n:]
            other_polynomial=other.polynomial[n:]
            if self.mod:
                inve=MOD(self.mod).Pow(other_polynomial[0],-1)
            else:
                inve=1/other_polynomial[0]
            quot=[]
            for i in range(len(self_polynomial)-len(other_polynomial)+1):
                if self.mod:
                    quot.append(self_polynomial[i]*inve%self.mod)
                else:
                    quot.append(self_polynomial[i]*inve)
                for j in range(len(other_polynomial)):
                    self_polynomial[i+j]-=other_polynomial[j]*quot[-1]
                    if self.mod:
                        self_polynomial[i+j]%=self.mod
            for i in range(len(self_polynomial)-len(other_polynomial)+1,len(self_polynomial)):
                if self.eps<abs(self_polynomial[i]):
                    assert self.max_degree!=-1
                    self_polynomial=self_polynomial[-len(other_polynomial)+1:]
                    while len(quot)<=self.max_degree:
                        self_polynomial.append(0)
                        if self.mod:
                            quot.append(self_polynomial[0]*inve%self.mod)
                            self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1])%self.mod for i in range(1,len(self_polynomial))]
                        else:
                            quot.append(self_polynomial[0]*inve)
                            self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1]) for i in range(1,len(self_polynomial))]
                    break
            quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        else:
            assert self.eps<abs(other)
            if self.mod:
                inve=MOD(self.mod).Pow(other,-1)
                quot=Polynomial([x*inve%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
            else:
                quot=Polynomial([x/other for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return quot

    def __floordiv__(self,other):
        assert type(other)==Polynomial
        quot=[0]*(len(self.polynomial)-len(other.polynomial)+1)
        rema=[x for x in self.polynomial]
        if self.mod:
            inve=MOD(self.mod).Pow(other.polynomial[-1],-1)
            for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
                quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod
                for j in range(len(other.polynomial)):
                    rema[i+j]-=quot[i]*other.polynomial[j]
                    rema[i+j]%=self.mod
        else:
            inve=1/other.polynomial[-1]
            for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
                quot[i]=rema[i+len(other.polynomial)-1]*inve
                for j in range(len(other.polynomial)):
                    rema[i+j]-=quot[i]*other.polynomial[j]
        quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return quot

    def __mod__(self,other):
        assert type(other)==Polynomial
        quot=[0]*(len(self.polynomial)-len(other.polynomial)+1)
        rema=[x for x in self.polynomial]
        if self.mod:
            inve=MOD(self.mod).Pow(other.polynomial[-1],-1)
            for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
                quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod
                for j in range(len(other.polynomial)):
                    rema[i+j]-=quot[i]*other.polynomial[j]
                    rema[i+j]%=self.mod
                rema.pop()
        else:
            inve=1/other.polynomial[-1]
            for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
                quot[i]=rema[i+len(other.polynomial)-1]*inve
                for j in range(len(other.polynomial)):
                    rema[i+j]-=quot[i]*other.polynomial[j]
                rema.pop()
        rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return rema

    def __divmod__(self,other):
        assert type(other)==Polynomial
        quot=[0]*(len(self.polynomial)-len(other.polynomial)+1)
        rema=[x for x in self.polynomial]
        if self.mod:
            inve=MOD(self.mod).Pow(other.polynomial[-1],-1)
            for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
                quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod
                for j in range(len(other.polynomial)):
                    rema[i+j]-=quot[i]*other.polynomial[j]
                    rema[i+j]%=self.mod
                rema.pop()
        else:
            inve=1/other.polynomial[-1]
            for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
                quot[i]=rema[i+len(other.polynomial)-1]*inve
                for j in range(len(other.polynomial)):
                    rema[i+j]-=quot[i]*other.polynomial[j]
                rema.pop()
        quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return quot,rema

    def __neg__(self):
        if self.mod:
            nega=Polynomial([(-x)%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        else:
            nega=Polynomial([-x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return nega

    def __pos__(self):
        posi=Polynomial([x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return posi

    def __bool__(self):
        return self.polynomial

    def __getitem__(self,n):
        if n<=len(self.polynomial)-1:
            return self.polynomial[n]
        else:
            return 0

    def __setitem__(self,n,x):
        if self.mod:
            x%=self.mod
        if self.max_degree==-1 or n<=self.max_degree:
            if n<=len(self.polynomial)-1:
                self.polynomial[n]=x
            elif self.eps<abs(x):
                self.polynomial+=[0]*(n-len(self.polynomial))+[x]

    def __call__(self,x):
        retu=0
        pow_x=1
        for i in range(len(self.polynomial)):
            retu+=pow_x*self.polynomial[i]
            pow_x*=x
            if self.mod:
                retu%=self.mod
                pow_x%=self.mod
        return retu

    def __str__(self):
        return "["+", ".join(map(str,self.polynomial))+"]"

def Bostan_Mori(poly_deno,poly_nume,N,mod=0,fft=False,ntt=False):
    if type(poly_deno)==Polynomial:
        poly_deno=poly_deno.polynomial
    if type(poly_nume)==Polynomial:
        poly_nume=poly_nume.polynomial
    if ntt:
        convolve=NTT
    elif fft:
        convolve=FFT
    else:
        def convolve(poly_deno,poly_nume):
            conv=[0]*(len(poly_deno)+len(poly_nume)-1)
            for i in range(len(poly_deno)):
                for j in range(len(poly_nume)):
                    conv[i+j]+=poly_deno[i]*poly_nume[j]
            if mod:
                for i in range(len(conv)):
                    conv[i]%=mod
            return conv
    while N:
        poly_nume_=[-x if i%2 else x for i,x in enumerate(poly_nume)]
        if N%2:
            poly_deno=convolve(poly_deno,poly_nume_)[1::2]
        else:
            poly_deno=convolve(poly_deno,poly_nume_)[::2]
        poly_nume=convolve(poly_nume,poly_nume_)[::2]
        if fft and mod:
            for i in range(len(poly_deno)):
                poly_deno[i]%=mod
            for i in range(len(poly_nume)):
                poly_nume[i]%=mod
        N//=2
    return poly_deno[0]

mod=10**9+9
dp=[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 12, 12, 12, 12, 12, 16, 16, 16, 16, 16, 20, 20, 20, 20, 20, 25, 25, 25, 25, 25, 30, 30, 30, 30, 30, 37, 37, 37, 37, 37, 44, 44, 44, 44, 44, 53, 53, 53, 53, 53, 62, 62, 
62, 62, 62, 73, 73, 73, 73, 73, 84, 84, 84, 84, 84, 97, 97, 97, 97, 97, 110, 110, 110, 110, 110, 125, 125, 125, 125, 125, 
140, 140, 140, 140, 140, 159, 159, 159, 159, 159, 178, 178, 178, 178, 178, 201, 201, 201, 201, 201, 224, 224, 224, 224, 224, 251, 251, 251, 251, 251, 278, 278, 278, 278, 278, 309, 309, 309, 309, 309, 340, 340, 340, 340, 340, 375, 375, 375, 375, 375, 410, 410, 410, 410, 410, 451, 451, 451, 451, 451, 492, 492, 492, 492, 492, 539, 539, 539, 539, 539, 586, 586, 586, 586, 586, 639, 639, 639, 639, 639, 692, 692, 692, 692, 692, 751, 751, 751, 751, 751, 810, 810, 810, 810, 810, 875, 875, 875, 875, 875, 940, 940, 940, 940, 940, 1014, 1014, 1014, 1014, 1014, 1088, 1088, 1088, 1088, 1088, 1171, 1171, 1171, 1171, 1171, 1254, 1254, 1254, 1254, 1254, 1346, 1346, 1346, 1346, 1346, 1438, 1438, 1438, 1438, 1438, 1539, 1539, 1539, 1539, 1539, 1640, 1640, 1640, 1640, 1640, 1750, 1750, 1750, 1750, 1750, 1860, 1860, 1860, 1860, 1860, 1982, 1982, 1982, 1982, 1982, 2104, 2104, 2104, 2104, 2104, 2238, 2238, 2238, 2238, 2238, 2372, 2372, 2372, 2372, 2372, 2518, 2518, 2518, 2518, 2518, 2664, 2664, 2664, 2664, 2664, 2822, 2822, 2822, 2822, 2822, 2980, 2980, 2980, 2980, 2980, 3150, 3150, 3150, 3150, 3150, 3320, 3320, 3320, 3320, 3320, 3506, 3506, 3506, 3506, 3506, 3692, 3692, 3692, 3692, 3692, 3894, 3894, 3894, 3894, 3894, 4096, 4096, 4096, 4096, 4096, 4314, 4314, 4314, 4314, 4314, 4532, 4532, 4532, 4532, 4532, 4766, 4766, 4766, 4766, 4766, 5000, 5000, 5000, 5000, 5000, 5250, 5250, 5250, 5250, 5250, 5500, 5500, 5500, 5500, 5500, 5770, 5770, 5770, 5770, 5770, 6040, 6040, 6040, 6040, 6040, 6330, 6330, 6330, 6330, 6330, 6620, 6620, 6620, 6620, 6620, 6930, 6930, 6930, 6930, 6930, 7240, 7240, 7240, 7240, 7240, 7570, 7570, 7570, 7570, 7570, 7900, 7900, 7900, 7900, 7900, 8250, 8250, 8250, 8250, 8250, 8600, 8600, 8600, 8600, 8600, 8975, 8975, 8975, 8975, 8975, 9350, 9350, 9350, 9350, 9350, 9750, 9750, 9750, 9750, 9750, 10150, 10150, 10150, 10150, 10150, 10575, 10575, 10575, 10575, 10575, 11000, 11000, 11000, 11000, 11000, 11450, 11450, 11450, 11450, 11450, 11900, 11900, 11900, 11900, 11900, 12375, 12375, 12375, 12375, 12375, 12850, 12850, 12850, 12850, 12850, 13355, 13355, 
13355, 13355, 13355, 13860, 13860, 13860, 13860, 13860, 14395, 14395, 14395, 14395, 14395, 14930, 14930, 14930, 14930, 14930, 15495, 15495, 15495, 15495, 15495, 16060, 16060, 16060, 16060, 16060, 16655, 16655, 16655, 16655, 16655, 17250, 17250, 17250, 17250, 17250, 17875, 17875, 17875, 17875, 17875, 18500, 18500, 18500, 18500, 18500, 19162, 19162, 19162, 19162, 19162, 19824, 19824, 19824, 19824, 19824, 20523, 20523, 20523, 20523, 20523, 21222, 21222, 21222, 21222, 21222, 21958, 21958, 21958, 21958, 21958, 22694, 22694, 22694, 22694, 22694, 23467, 23467, 23467, 23467, 23467, 24240, 24240, 24240, 24240, 24240, 25050, 25050, 25050, 25050, 25050, 25860, 25860, 25860, 25860, 25860, 26714, 26714, 26714, 26714, 26714, 27568, 27568, 27568, 27568, 27568, 28466, 28466, 28466, 28466, 28466, 29364, 29364, 29364, 29364, 29364, 30306, 30306, 30306, 30306, 
30306, 31248, 31248, 31248, 31248, 31248, 32234, 32234, 32234, 32234, 32234, 33220, 33220, 33220, 33220, 33220, 34250, 34250, 34250, 34250, 34250, 35280, 35280, 35280, 35280, 35280, 36363, 36363, 36363, 36363, 36363, 37446, 37446, 37446, 37446, 37446, 38582, 38582, 38582, 38582, 38582, 39718, 39718, 39718, 39718, 39718, 40907, 40907, 40907, 40907, 40907, 42096, 42096, 42096, 42096, 42096, 43338, 43338, 43338, 43338, 43338, 44580, 44580, 44580, 44580, 44580, 45875, 45875, 45875, 45875, 45875, 47170, 47170, 47170, 47170, 47170, 48527, 48527, 48527, 48527, 48527, 49884, 49884, 49884, 49884, 49884, 51303, 51303, 51303, 51303, 51303, 52722, 52722, 52722, 52722, 52722, 54203, 54203, 54203, 54203, 54203, 55684, 55684, 55684, 55684, 55684, 57227, 57227, 57227, 57227, 57227, 58770, 58770, 58770, 58770, 58770, 60375, 60375, 60375, 60375, 60375, 61980, 
61980, 61980, 61980, 61980, 63658, 63658, 63658, 63658, 63658, 65336, 65336, 65336, 65336, 65336, 67087, 67087, 67087, 67087, 67087, 68838, 68838, 68838, 68838, 68838, 70662, 70662, 70662, 70662, 70662, 72486, 72486, 72486, 72486, 72486, 74383, 74383, 74383, 74383, 74383, 76280, 76280, 76280, 76280, 76280, 78250, 78250, 78250, 78250, 78250, 80220, 80220, 80220, 80220, 80220, 82274, 82274, 82274, 82274, 82274, 84328, 84328, 84328, 84328, 84328, 86466, 86466, 86466, 86466, 86466, 88604, 88604, 88604, 88604, 88604, 90826, 90826, 90826, 90826, 90826, 93048, 93048, 93048, 93048, 93048, 95354, 95354, 95354, 95354, 95354, 97660, 97660, 97660, 97660, 97660, 100050, 100050, 100050, 100050, 100050, 102440, 102440, 102440, 102440, 102440, 104927, 104927, 104927, 104927, 104927, 107414, 107414, 107414, 107414, 107414, 109998, 109998, 109998, 109998, 109998, 112582, 112582, 112582, 112582, 112582, 115263, 115263, 115263, 115263, 115263, 117944, 117944, 117944, 117944, 117944, 120722, 120722, 120722, 120722, 120722, 123500, 123500, 123500, 123500, 123500, 126375, 126375, 126375, 126375, 126375, 
129250, 129250, 129250, 129250, 129250, 132235, 132235, 132235, 132235, 132235, 135220, 135220, 135220, 135220, 135220, 138315, 138315, 138315, 138315, 138315, 141410, 141410, 141410, 141410, 141410, 144615, 144615, 144615, 144615, 144615, 147820, 147820, 147820, 147820, 147820, 151135, 151135, 151135, 151135, 151135, 154450, 154450, 154450, 154450, 154450, 157875, 157875, 157875, 157875, 157875, 161300, 161300, 161300, 161300, 161300, 164850, 164850, 164850, 164850, 164850, 168400, 
168400, 168400, 168400, 168400, 172075, 172075, 172075, 172075, 172075, 175750, 175750, 175750, 175750, 175750, 179550, 179550, 179550, 179550, 179550, 183350, 183350, 183350, 183350, 183350, 187275, 187275, 187275, 187275, 187275, 191200, 191200, 191200, 191200, 191200, 195250, 195250, 195250, 195250, 195250, 199300, 199300, 199300, 199300, 199300, 203490, 203490, 203490, 203490, 203490, 207680, 207680, 207680, 207680, 207680, 212010, 212010, 212010, 212010, 212010, 216340, 216340, 
216340, 216340, 216340, 220810, 220810, 220810, 220810, 220810, 225280, 225280, 225280, 225280, 225280, 229890, 229890, 229890, 229890, 229890, 234500, 234500, 234500, 234500, 234500, 239250, 239250, 239250, 239250, 239250, 244000, 244000, 244000, 244000, 244000, 248908, 248908, 248908, 248908, 248908, 253816, 253816, 253816, 253816, 253816, 258882, 258882, 258882, 258882, 258882, 263948, 263948, 263948, 263948, 263948, 269172, 269172, 269172, 269172, 269172, 274396, 274396, 274396, 
274396, 274396, 279778, 279778, 279778, 279778, 279778, 285160, 285160, 285160, 285160, 285160, 290700, 290700, 290700, 290700, 290700, 296240, 296240, 296240, 296240, 296240, 301956, 301956, 301956, 301956, 301956, 307672, 307672, 307672, 307672, 307672, 313564, 313564, 313564, 313564, 313564, 319456, 319456, 319456, 319456, 319456, 325524, 325524, 325524, 325524, 325524, 331592, 331592, 331592, 331592, 331592, 337836, 337836, 337836, 337836, 337836, 344080, 344080, 344080, 344080, 
344080, 350500, 350500, 350500, 350500, 350500, 356920, 356920, 356920, 356920, 356920, 363537, 363537, 363537, 363537, 363537, 370154, 370154, 370154, 370154, 370154, 376968, 376968, 376968, 376968, 376968, 383782, 383782, 383782, 383782, 383782, 390793, 390793, 390793, 390793, 390793, 397804, 397804, 397804, 397804, 397804, 405012, 405012, 405012, 405012, 405012, 412220, 412220, 412220, 412220, 412220, 419625, 419625, 419625, 419625, 419625, 427030, 427030, 427030, 427030, 427030, 
434653, 434653, 434653, 434653, 434653, 442276, 442276, 442276, 442276, 442276, 450117, 450117, 450117, 450117, 450117, 457958, 457958, 457958, 457958, 457958, 466017, 466017, 466017, 466017, 466017, 474076, 474076, 474076, 474076, 474076, 482353, 482353, 482353, 482353, 482353, 490630, 490630, 490630, 490630, 490630, 499125, 499125, 499125, 499125, 499125, 507620, 507620, 507620, 507620, 507620, 516357, 516357, 516357, 516357, 516357, 525094, 525094, 525094, 525094, 525094, 534073, 
534073, 534073, 534073, 534073, 543052, 543052, 543052, 543052, 543052, 552273, 552273, 552273, 552273, 552273, 561494, 561494, 561494, 561494, 561494, 570957, 570957, 570957, 570957, 570957, 580420, 580420, 580420, 580420, 580420, 590125, 590125, 590125, 590125, 590125, 599830, 599830, 599830, 599830, 599830, 609801, 609801, 609801, 609801, 609801, 619772, 619772, 619772, 619772, 619772, 630009, 630009, 630009, 630009, 630009, 640246, 640246, 640246, 640246, 640246, 650749, 650749, 
650749, 650749, 650749, 661252, 661252, 661252, 661252, 661252, 672021, 672021, 672021, 672021, 672021, 682790, 682790, 682790, 682790, 682790, 693825, 693825, 693825, 693825, 693825, 704860, 704860, 704860, 704860, 704860, 716188, 716188, 716188, 716188, 716188, 727516, 727516, 727516, 727516, 727516, 739137, 739137, 739137, 739137, 739137, 750758, 750758, 750758, 750758, 750758, 762672, 762672, 762672, 762672, 762672, 774586, 774586, 774586, 774586, 774586, 786793, 786793, 786793, 
786793, 786793, 799000, 799000, 799000, 799000, 799000, 811500, 811500, 811500, 811500, 811500, 824000, 824000, 824000, 824000, 824000, 836820, 836820, 836820, 836820, 836820, 849640, 849640, 849640, 849640, 849640, 862780, 862780, 862780, 862780, 862780, 875920, 875920, 875920, 875920, 875920, 889380, 889380, 889380, 889380, 889380, 902840, 902840, 902840, 902840, 902840, 916620, 916620, 916620, 916620, 916620, 930400, 930400, 930400, 930400, 930400, 944500, 944500, 944500, 944500, 
944500, 958600, 958600, 958600, 958600, 958600, 973050, 973050, 973050, 973050, 973050, 987500, 987500, 987500, 987500, 987500, 1002300, 1002300, 1002300, 1002300, 1002300, 1017100, 1017100, 1017100, 1017100, 1017100, 1032250, 1032250, 1032250, 1032250, 1032250, 1047400, 1047400, 1047400, 1047400, 1047400, 1062900, 1062900, 1062900, 1062900, 1062900, 1078400, 1078400, 1078400, 1078400, 1078400, 1094250, 1094250, 1094250, 1094250, 1094250, 1110100, 1110100, 1110100, 1110100, 1110100, 
1126330, 1126330, 1126330, 1126330, 1126330, 1142560, 1142560, 1142560, 1142560, 1142560, 1159170, 1159170, 1159170, 1159170, 1159170, 1175780, 1175780, 1175780, 1175780, 1175780, 1192770, 1192770, 1192770, 1192770, 1192770, 1209760, 1209760, 1209760, 1209760, 1209760, 1227130, 1227130, 1227130, 1227130, 1227130, 1244500, 1244500, 1244500, 1244500, 1244500, 1262250, 1262250, 1262250, 1262250, 1262250, 1280000, 1280000, 1280000, 1280000, 1280000, 1298164, 1298164, 1298164, 1298164, 1298164, 1316328, 1316328, 1316328, 1316328, 1316328, 1334906, 1334906, 1334906, 1334906, 1334906, 1353484, 1353484, 1353484, 1353484, 1353484, 1372476, 1372476, 1372476, 1372476, 1372476, 1391468, 1391468, 1391468, 1391468, 1391468, 1410874, 1410874, 1410874, 1410874, 1410874, 1430280, 1430280, 1430280, 1430280, 1430280, 1450100, 1450100, 1450100, 1450100, 1450100, 1469920, 1469920, 1469920, 1469920, 1469920, 1490188, 1490188, 1490188, 1490188, 1490188, 1510456, 1510456, 1510456, 1510456, 1510456, 1531172, 1531172, 1531172, 1531172, 1531172, 1551888, 1551888, 1551888, 1551888, 1551888, 1573052, 1573052, 
1573052, 1573052, 1573052, 1594216, 1594216, 1594216, 1594216, 1594216, 1615828, 1615828, 1615828, 1615828, 1615828, 1637440, 1637440, 1637440, 1637440, 1637440, 1659500, 1659500, 1659500, 1659500, 1659500, 1681560, 1681560, 1681560, 1681560, 1681560, 1704106, 1704106, 1704106, 1704106, 1704106, 1726652, 1726652, 1726652, 1726652, 1726652, 1749684, 1749684, 1749684, 1749684, 1749684, 1772716, 1772716, 1772716, 1772716, 1772716, 1796234, 1796234, 1796234, 1796234, 1796234, 1819752, 1819752, 1819752, 1819752, 1819752, 1843756, 1843756, 1843756, 1843756, 1843756, 1867760, 1867760, 1867760, 1867760, 1867760, 1892250, 1892250, 1892250, 1892250, 1892250, 1916740, 1916740, 1916740, 1916740, 1916740, 1941754, 1941754, 1941754, 1941754, 1941754, 1966768, 1966768, 1966768, 1966768, 1966768, 1992306, 1992306, 1992306, 1992306, 1992306, 2017844, 2017844, 2017844, 2017844, 2017844, 2043906, 2043906, 2043906, 2043906, 2043906, 2069968, 2069968, 2069968, 2069968, 2069968, 2096554, 2096554, 2096554, 2096554, 2096554, 2123140, 2123140, 2123140, 2123140, 2123140, 2150250, 2150250, 2150250, 2150250, 
2150250, 2177360, 2177360, 2177360, 2177360, 2177360, 2205036, 2205036, 2205036, 2205036, 2205036, 2232712, 2232712, 2232712, 2232712, 2232712, 2260954, 2260954, 2260954, 2260954, 2260954, 2289196, 2289196, 2289196, 2289196, 2289196, 2318004, 2318004, 2318004, 2318004, 2318004, 2346812, 2346812, 2346812, 2346812, 2346812, 2376186, 2376186, 2376186, 2376186, 2376186, 2405560, 2405560, 2405560, 2405560, 2405560, 2435500, 2435500, 2435500, 2435500, 2435500, 2465440, 2465440, 2465440, 2465440, 2465440, 2495988, 2495988, 2495988, 2495988, 2495988, 2526536, 2526536, 2526536, 2526536, 2526536, 2557692, 2557692, 2557692, 2557692, 2557692, 2588848, 2588848, 2588848, 2588848, 2588848, 2620612, 2620612, 2620612, 2620612, 2620612, 2652376, 2652376, 2652376, 2652376, 2652376, 2684748, 2684748, 2684748, 2684748, 2684748, 2717120, 2717120, 2717120, 2717120, 2717120, 2750100, 2750100, 2750100, 2750100, 2750100, 2783080, 2783080, 2783080, 2783080, 2783080, 2816714, 2816714, 2816714, 2816714, 2816714, 2850348, 2850348, 2850348, 2850348, 2850348, 2884636, 2884636, 2884636, 2884636, 2884636, 2918924, 
2918924, 2918924, 2918924, 2918924, 2953866, 2953866, 2953866, 2953866, 2953866, 2988808, 2988808, 2988808, 2988808, 2988808, 3024404, 3024404, 3024404, 3024404, 3024404, 3060000, 3060000, 3060000, 3060000, 3060000, 3096250, 3096250, 3096250, 3096250, 3096250, 3132500, 3132500, 3132500, 3132500, 3132500, 3169450, 3169450, 3169450, 3169450, 3169450, 3206400, 3206400, 3206400, 3206400, 3206400, 3244050, 3244050, 3244050, 3244050, 3244050, 3281700, 3281700, 3281700, 3281700, 3281700, 3320050, 3320050, 3320050, 3320050, 3320050, 3358400, 3358400, 3358400, 3358400, 3358400, 3397450, 3397450, 3397450, 3397450, 3397450, 3436500, 3436500, 3436500, 3436500, 3436500, 3476250, 3476250, 3476250, 3476250, 3476250, 3516000, 3516000, 3516000, 3516000, 3516000, 3556500, 3556500, 3556500, 3556500, 3556500, 3597000, 3597000, 3597000, 3597000, 3597000, 3638250, 3638250, 3638250, 3638250, 3638250, 3679500, 3679500, 3679500, 3679500, 3679500, 3721500, 3721500, 3721500, 3721500, 3721500, 3763500, 3763500, 3763500, 3763500, 3763500, 3806250, 3806250, 3806250, 3806250, 3806250, 3849000, 3849000, 3849000, 
3849000, 3849000, 3892500, 3892500, 3892500, 3892500, 3892500, 3936000, 3936000, 3936000, 3936000, 3936000, 3980300, 3980300, 3980300, 3980300, 3980300, 4024600, 4024600, 4024600, 4024600, 4024600, 4069700, 4069700, 4069700, 4069700, 4069700, 4114800, 4114800, 4114800, 4114800, 4114800, 4160700, 4160700, 4160700, 4160700, 4160700, 4206600, 4206600, 4206600, 4206600, 4206600, 4253300, 4253300, 4253300, 4253300, 4253300, 4300000, 4300000, 4300000, 4300000, 4300000, 4347500, 4347500, 4347500, 4347500, 4347500, 4395000, 4395000, 4395000, 4395000, 4395000, 4443355, 4443355, 4443355, 4443355, 4443355, 4491710, 4491710, 4491710, 4491710, 4491710, 4540920, 4540920, 4540920, 4540920, 4540920, 4590130, 4590130, 4590130, 4590130, 4590130, 4640195, 4640195, 4640195, 4640195, 4640195, 4690260, 4690260, 4690260, 4690260, 4690260, 4741180, 4741180, 4741180, 4741180, 4741180, 4792100, 4792100, 4792100, 4792100, 4792100, 4843875, 4843875, 4843875, 4843875, 4843875, 4895650, 4895650, 4895650, 4895650, 4895650, 4948335, 4948335, 4948335, 4948335, 4948335, 5001020, 5001020, 5001020, 5001020, 5001020, 
5054615, 5054615, 5054615, 5054615, 5054615, 5108210, 5108210, 5108210, 5108210, 5108210, 5162715, 5162715, 5162715, 5162715, 5162715, 5217220, 5217220, 5217220, 5217220, 5217220, 5272635, 5272635, 5272635, 5272635, 5272635, 5328050, 5328050, 5328050, 5328050, 5328050, 5384375, 5384375, 5384375, 5384375, 5384375, 5440700, 5440700, 5440700, 5440700, 5440700, 5497995, 5497995, 5497995, 5497995, 5497995, 5555290, 5555290, 5555290, 5555290, 5555290, 5613555, 5613555, 5613555, 5613555, 5613555, 5671820, 5671820, 5671820, 5671820, 5671820, 5731055, 5731055, 5731055, 5731055, 5731055, 5790290, 5790290, 5790290, 5790290, 5790290, 5850495, 5850495, 5850495, 5850495, 5850495, 5910700, 5910700, 5910700, 5910700, 5910700, 5971875, 5971875, 5971875, 5971875, 5971875, 6033050, 6033050, 6033050, 6033050, 6033050, 6095255, 6095255, 6095255, 6095255, 6095255, 6157460, 6157460, 6157460, 6157460, 6157460, 6220695, 6220695, 6220695, 6220695, 6220695, 6283930, 6283930, 6283930, 6283930, 6283930, 6348195, 6348195, 6348195, 6348195, 6348195, 6412460, 6412460, 6412460, 6412460, 6412460, 6477755, 6477755, 
6477755, 6477755, 6477755, 6543050, 6543050, 6543050, 6543050, 6543050, 6609375, 6609375, 6609375, 6609375, 6609375, 6675700, 6675700, 6675700, 6675700, 6675700, 6743120, 6743120, 6743120, 6743120, 6743120, 6810540, 6810540, 6810540, 6810540, 6810540, 6879055, 6879055, 6879055, 6879055, 6879055, 6947570, 6947570, 6947570, 6947570, 6947570, 7017180, 7017180, 7017180, 7017180, 7017180, 7086790, 7086790, 7086790, 7086790, 7086790, 7157495, 7157495, 7157495, 7157495, 7157495, 7228200, 7228200, 7228200, 7228200, 7228200, 7300000, 7300000, 7300000, 7300000, 7300000, 7371800, 7371800, 7371800, 7371800, 7371800, 7444760, 7444760, 7444760, 7444760, 7444760, 7517720, 7517720, 7517720, 7517720, 7517720, 7591840, 7591840, 7591840, 7591840, 7591840, 7665960, 7665960, 7665960, 7665960, 7665960, 7741240, 7741240, 7741240, 7741240, 7741240, 7816520, 7816520, 7816520, 7816520, 7816520, 7892960, 7892960, 7892960, 7892960, 7892960, 7969400, 7969400, 7969400, 7969400, 7969400, 8047000, 8047000, 8047000, 8047000, 8047000, 8124600, 8124600, 8124600, 8124600, 8124600, 8203430, 8203430, 8203430, 8203430, 
8203430, 8282260, 8282260, 8282260, 8282260, 8282260, 8362320, 8362320, 8362320, 8362320, 8362320, 8442380, 8442380, 8442380, 8442380, 8442380, 8523670, 8523670, 8523670, 8523670, 8523670, 8604960, 8604960, 8604960, 8604960, 8604960, 8687480, 8687480, 8687480, 8687480, 8687480, 8770000, 8770000, 8770000, 8770000, 8770000, 8853750, 8853750, 8853750, 8853750, 8853750, 8937500, 8937500, 8937500, 8937500, 8937500, 9022550, 9022550, 9022550, 9022550, 9022550, 9107600, 9107600, 9107600, 9107600, 9107600, 9193950, 9193950, 9193950, 9193950, 9193950, 9280300, 9280300, 9280300, 9280300, 9280300, 9367950, 9367950, 9367950, 9367950, 9367950, 9455600, 9455600, 9455600, 9455600, 9455600, 9544550, 9544550, 9544550, 9544550, 9544550, 9633500, 9633500, 9633500, 9633500, 9633500, 9723750, 9723750, 9723750, 9723750, 9723750, 9814000, 9814000, 9814000, 9814000, 9814000, 9905625, 9905625, 9905625, 9905625, 9905625, 9997250, 9997250, 9997250, 9997250, 9997250, 10090250, 10090250, 10090250, 10090250, 10090250, 10183250, 10183250, 10183250, 10183250, 10183250, 10277625, 10277625, 10277625, 10277625, 10277625, 10372000, 10372000, 10372000, 10372000, 10372000, 10467750, 10467750, 10467750, 10467750, 10467750, 10563500, 10563500, 10563500, 10563500, 10563500, 10660625, 10660625, 10660625, 10660625, 10660625, 10757750, 10757750, 10757750, 10757750, 10757750, 10856325, 10856325, 10856325, 10856325, 10856325, 10954900, 10954900, 10954900, 10954900, 10954900, 11054925, 
11054925, 11054925, 11054925, 11054925, 11154950, 11154950, 11154950, 11154950, 11154950, 11256425, 11256425, 11256425, 11256425, 11256425, 11357900, 11357900, 11357900, 11357900, 11357900, 11460825, 11460825, 11460825, 11460825, 11460825, 11563750, 11563750, 11563750, 11563750, 11563750, 11668125, 11668125, 11668125, 11668125, 11668125, 11772500, 11772500, 11772500, 11772500, 11772500, 11878406, 11878406, 11878406, 11878406, 11878406, 11984312, 11984312, 11984312, 11984312, 11984312, 12091749, 12091749, 12091749, 12091749, 12091749, 12199186, 12199186, 12199186, 12199186, 12199186, 12308154, 12308154, 
12308154, 12308154, 12308154, 12417122, 12417122, 12417122, 12417122, 12417122, 12527621, 12527621, 12527621, 12527621, 12527621, 12638120, 12638120, 12638120, 12638120, 12638120, 12750150, 12750150, 12750150, 12750150, 12750150, 12862180, 12862180, 12862180, 12862180, 12862180, 12975822, 12975822, 12975822, 12975822, 12975822, 13089464, 13089464, 13089464, 13089464, 13089464, 13204718, 13204718, 13204718, 13204718, 13204718, 13319972, 13319972, 13319972, 13319972, 13319972, 13436838, 13436838, 13436838, 13436838, 13436838, 13553704, 13553704, 13553704, 13553704, 13553704, 13672182, 13672182, 13672182, 
13672182, 13672182, 13790660, 13790660, 13790660, 13790660, 13790660, 13910750, 13910750, 13910750, 13910750, 13910750, 14030840, 14030840, 14030840, 14030840, 14030840, 14152629, 14152629, 14152629, 14152629, 14152629, 14274418, 14274418, 14274418, 14274418, 14274418, 14397906, 14397906, 14397906, 14397906, 14397906, 14521394, 14521394, 14521394, 14521394, 14521394, 14646581, 14646581, 14646581, 14646581, 14646581, 14771768, 14771768, 14771768, 14771768, 14771768, 14898654, 14898654, 14898654, 14898654, 14898654, 15025540, 15025540, 15025540, 15025540, 15025540, 15154125, 15154125, 15154125, 15154125, 
15154125, 15282710, 15282710, 15282710, 15282710, 15282710, 15413081, 15413081, 15413081, 15413081, 15413081, 15543452, 15543452, 15543452, 15543452, 15543452, 15675609, 15675609, 15675609, 15675609, 15675609, 15807766, 15807766, 15807766, 15807766, 15807766, 15941709, 15941709, 15941709, 15941709, 15941709, 16075652, 16075652, 16075652, 16075652, 16075652, 16211381, 16211381, 16211381, 16211381, 16211381, 16347110, 16347110, 16347110, 16347110, 16347110, 16484625, 16484625, 16484625, 16484625, 16484625, 16622140, 16622140, 16622140, 16622140, 16622140, 16761534, 16761534, 16761534, 16761534, 16761534, 
16900928, 16900928, 16900928, 16900928, 16900928, 17042201, 17042201, 17042201, 17042201, 17042201, 17183474, 17183474, 17183474, 17183474, 17183474, 17326626, 17326626, 17326626, 17326626, 17326626, 17469778, 17469778, 17469778, 17469778, 17469778, 17614809, 17614809, 17614809, 17614809, 17614809, 17759840, 17759840, 17759840, 17759840, 17759840, 17906750, 17906750, 17906750, 17906750, 17906750, 18053660, 18053660, 18053660, 18053660, 18053660, 18202542, 18202542, 18202542, 18202542, 18202542, 18351424, 18351424, 18351424, 18351424, 18351424, 18502278, 18502278, 18502278, 18502278, 18502278, 18653132, 
18653132, 18653132, 18653132, 18653132, 18805958, 18805958, 18805958, 18805958, 18805958, 18958784, 18958784, 18958784, 18958784, 18958784, 19113582, 19113582, 19113582, 19113582, 19113582, 19268380, 19268380, 19268380, 19268380, 19268380, 19425150, 19425150, 19425150, 19425150, 19425150, 19581920, 19581920, 19581920, 19581920, 19581920, 19740761, 19740761, 19740761, 19740761, 19740761, 19899602, 19899602, 19899602, 19899602, 19899602, 20060514, 20060514, 20060514, 20060514, 20060514, 20221426, 20221426, 20221426, 20221426, 20221426, 20384409, 20384409, 20384409, 20384409, 20384409, 20547392, 20547392, 
20547392, 20547392, 20547392, 20712446, 20712446, 20712446, 20712446, 20712446, 20877500, 20877500, 20877500, 20877500, 20877500, 21044625, 21044625, 21044625, 21044625, 21044625, 21211750, 21211750, 21211750, 21211750, 21211750, 21381045, 21381045, 21381045, 21381045, 21381045, 21550340, 21550340, 21550340, 21550340, 21550340, 21721805, 21721805, 21721805, 21721805, 21721805, 21893270, 21893270, 21893270, 21893270, 21893270, 22066905, 22066905, 22066905, 22066905, 22066905, 22240540, 22240540, 22240540, 22240540, 22240540, 22416345, 22416345, 22416345, 22416345, 22416345, 22592150, 22592150, 22592150, 
22592150, 22592150, 22770125, 22770125, 22770125, 22770125, 22770125, 22948100, 22948100, 22948100, 22948100, 22948100, 23128350, 23128350, 23128350, 23128350, 23128350, 23308600, 23308600, 23308600, 23308600, 23308600, 23491125, 23491125, 23491125, 23491125, 23491125, 23673650, 23673650, 23673650, 23673650, 23673650, 23858450, 23858450, 23858450, 23858450, 23858450, 24043250, 24043250, 24043250, 24043250, 24043250, 24230325, 24230325, 24230325, 24230325, 24230325, 24417400, 24417400, 24417400, 24417400, 24417400, 24606750, 24606750, 24606750, 24606750, 24606750, 24796100, 24796100, 24796100, 24796100, 
24796100, 24987830, 24987830, 24987830, 24987830, 24987830, 25179560, 25179560, 25179560, 25179560, 25179560, 25373670, 25373670, 25373670, 25373670, 25373670, 25567780, 25567780, 25567780, 25567780, 25567780, 25764270, 25764270, 25764270, 25764270, 25764270, 25960760, 25960760, 25960760, 25960760, 25960760, 26159630, 26159630, 26159630, 26159630, 26159630, 26358500, 26358500, 26358500, 26358500, 26358500, 26559750, 26559750, 26559750, 26559750, 26559750, 26761000, 26761000, 26761000, 26761000, 26761000]
LI={r:Lagrange_Interpolation(Y=[dp[i] for i in range(r,3000,500)],x0=r,xd=500,mod=mod) for r in range(500)}
T=int(readline())
for _ in range(T):
    M=int(readline())
    r=M%500
    ans=LI[r][M]
    print(ans)
0