結果
問題 | No.42 貯金箱の溜息 |
ユーザー | vwxyz |
提出日時 | 2021-08-21 08:00:06 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 143 ms / 5,000 ms |
コード長 | 44,980 bytes |
コンパイル時間 | 145 ms |
コンパイル使用メモリ | 17,408 KB |
実行使用メモリ | 16,384 KB |
最終ジャッジ日時 | 2024-10-14 16:46:08 |
合計ジャッジ時間 | 1,146 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 143 ms
16,384 KB |
testcase_01 | AC | 139 ms
16,384 KB |
testcase_02 | AC | 140 ms
16,384 KB |
ソースコード
import bisect import copy import decimal import fractions import functools import heapq import itertools import math import random import sys from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import degrees, gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines def Extended_Euclid(n,m): stack=[] while m: stack.append((n,m)) n,m=m,n%m if n>=0: x,y=1,0 else: x,y=-1,0 for i in range(len(stack)-1,-1,-1): n,m=stack[i] x,y=y,x-(n//m)*y return x,y class MOD: def __init__(self,mod): self.mod=mod def Pow(self,a,n): a%=self.mod if n>=0: return pow(a,n,self.mod) else: assert math.gcd(a,self.mod)==1 x=Extended_Euclid(a,self.mod)[0] return pow(x,-n,self.mod) def Build_Fact(self,N): assert N>=0 self.factorial=[1] for i in range(1,N+1): self.factorial.append((self.factorial[-1]*i)%self.mod) self.factorial_inv=[None]*(N+1) self.factorial_inv[-1]=self.Pow(self.factorial[-1],-1) for i in range(N-1,-1,-1): self.factorial_inv[i]=(self.factorial_inv[i+1]*(i+1))%self.mod return self.factorial_inv def Fact(self,N): return self.factorial[N] def Fact_Inv(self,N): return self.factorial_inv[N] def Comb(self,N,K): if K<0 or K>N: return 0 s=self.factorial[N] s=(s*self.factorial_inv[K])%self.mod s=(s*self.factorial_inv[N-K])%self.mod return s class Lagrange_Interpolation: def __init__(self,X=False,Y=False,x0=None,xd=None,mod=0): self.degree=len(Y)-1 self.mod=mod assert self.degree<self.mod if x0!=None and xd!=None: assert xd>0 self.X=[(x0+i*xd)%self.mod for i in range(self.degree+1)] fact_inve=1 for i in range(1,self.degree+1): fact_inve*=i*xd fact_inve%=self.mod fact_inve=MOD(self.mod).Pow(fact_inve,-1) self.coefficient=[y for y in Y] for i in range(self.degree-1,-1,-2): self.coefficient[i]*=-1 for i in range(self.degree,-1,-1): self.coefficient[i]*=fact_inve self.coefficient[i]%=self.mod self.coefficient[self.degree-i]*=fact_inve self.coefficient[self.degree-i]%=self.mod fact_inve*=i*xd fact_inve%=self.mod else: self.X=X assert len(self.X)==self.degree+1 self.coefficient=[y for y in Y] for i in range(self.degree+1): for j in range(self.degree+1): if i==j: continue self.coefficient[i]*=X[i]-X[j] self.coefficient%=self.mod def __getitem__(self,N): N%=self.mod XX=[N-x for x in self.X] XX_left=[1]*(self.degree+2) for i in range(1,self.degree+2): XX_left[i]=XX_left[i-1]*XX[i-1]%self.mod XX_right=[1]*(self.degree+2) for i in range(self.degree,-1,-1): XX_right[i]=XX_right[i+1]*XX[i]%self.mod return sum(XX_left[i]*XX_right[i+1]*self.coefficient[i] for i in range(self.degree+1))%self.mod def NTT(polynomial1,polynomial2): prim_root=3 prim_root_inve=MOD(mod).Pow(prim_root,-1) def DFT(polynomial,inverse=False): dft=polynomial+[0]*((1<<n)-len(polynomial)) if inverse: for bit in range(1,n+1): a=1<<bit-1 x=pow(prim_root,mod-1>>bit,mod) U=[1] for _ in range(a): U.append(U[-1]*x%mod) for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a dft[s],dft[t]=(dft[s]+dft[t]*U[j])%mod,(dft[s]-dft[t]*U[j])%mod else: for bit in range(n,0,-1): a=1<<bit-1 x=pow(prim_root_inve,mod-1>>bit,mod) U=[1] for _ in range(a): U.append(U[-1]*x%mod) for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a dft[s],dft[t]=(dft[s]+dft[t])%mod,U[j]*(dft[s]-dft[t])%mod return dft N=len(polynomial1)+len(polynomial2)-1 n=(N-1).bit_length() ntt=[x*y%mod for x,y in zip(DFT(polynomial1),DFT(polynomial2))] ntt=DFT(ntt,inverse=True) x=pow((mod+1)//2,n) ntt=[ntt[i]*x%mod for i in range(N)] return ntt def FFT(polynomial1,polynomial2,digit=10**5): def DFT(polynomial,n,inverse=False): N=len(polynomial) if inverse: primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)] else: primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)] dft=polynomial+[0]*((1<<n)-N) if inverse: for bit in range(1,n+1): a=1<<bit-1 for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a dft[s],dft[t]=dft[s]+dft[t]*primitive_root[j<<n-bit],dft[s]-dft[t]*primitive_root[j<<n-bit] else: for bit in range(n,0,-1): a=1<<bit-1 for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a dft[s],dft[t]=dft[s]+dft[t],primitive_root[j<<n-bit]*(dft[s]-dft[t]) return dft def FFT_(polynomial1,polynomial2): N1=len(polynomial1) N2=len(polynomial2) N=N1+N2-1 n=(N-1).bit_length() fft=[x*y for x,y in zip(DFT(polynomial1,n),DFT(polynomial2,n))] fft=DFT(fft,n,inverse=True) fft=[round((fft[i]/(1<<n)).real) for i in range(N)] return fft N1=len(polynomial1) N2=len(polynomial2) N=N1+N2-1 polynomial11,polynomial12=[None]*N1,[None]*N1 polynomial21,polynomial22=[None]*N2,[None]*N2 for i in range(N1): polynomial11[i],polynomial12[i]=divmod(polynomial1[i],digit) for i in range(N2): polynomial21[i],polynomial22[i]=divmod(polynomial2[i],digit) polynomial=[0]*(N) a=digit**2-digit for i,x in enumerate(FFT_(polynomial11,polynomial21)): polynomial[i]+=x*a a=digit-1 for i,x in enumerate(FFT_(polynomial12,polynomial22)): polynomial[i]-=x*a for i,x in enumerate(FFT_([x1+x2 for x1,x2 in zip(polynomial11,polynomial12)],[x1+x2 for x1,x2 in zip(polynomial21,polynomial22)])): polynomial[i]+=x*digit return polynomial def Primitive_Root(p): if p==2: return 1 if p==167772161: return 3 if p==469762049: return 3 if p==754974721: return 11 if p==998244353: return 3 if p==10**9+7: return 5 divisors=[2] pp=(p-1)//2 while pp%2==0: pp//=2 for d in range(3,pp+1,2): if d**2>pp: break if pp%d==0: divisors.append(d) while pp%d==0: pp//=d if pp>1: divisors.append(pp) primitive_root=2 while True: for d in divisors: if pow(primitive_root,(p-1)//d,p)==1: break else: return primitive_root primitive_root+=1 class Polynomial: def __init__(self,polynomial,max_degree=-1,eps=1e-12,mod=0): self.max_degree=max_degree if self.max_degree!=-1 and len(polynomial)>self.max_degree+1: self.polynomial=polynomial[:self.max_degree+1] else: self.polynomial=polynomial self.mod=mod self.eps=eps def __eq__(self,other): if type(other)!=Polynomial: return False if len(self.polynomial)!=len(other.polynomial): return False for i in range(len(self.polynomial)): if abs(self.polynomial[i]-other.polynomial[i])>self.eps: return False return True def __ne__(self,other): if type(other)!=Polynomial: return True if len(self.polynomial)!=len(other.polynomial): return True for i in range(len(self.polynomial)): if abs(self.polynomial[i]-other.polynomial[i])>self.eps: return True return False def __add__(self,other): assert type(other)==Polynomial summ=[0]*max(len(self.polynomial),len(other.polynomial)) for i in range(len(self.polynomial)): summ[i]+=self.polynomial[i] for i in range(len(other.polynomial)): summ[i]+=other.polynomial[i] if self.mod: for i in range(len(summ)): summ[i]%=self.mod while summ and abs(summ[-1])<self.eps: summ.pop() summ=Polynomial(summ,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return summ def __sub__(self,other): assert type(other)==Polynomial diff=[0]*max(len(self.polynomial),len(other.polynomial)) for i in range(len(self.polynomial)): diff[i]+=self.polynomial[i] for i in range(len(other.polynomial)): diff[i]-=other.polynomial[i] if self.mod: for i in range(len(diff)): diff[i]%=self.mod while diff and abs(diff[-1])<self.eps: diff.pop() diff=Polynomial(diff,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return diff def __mul__(self,other): if type(other)==Polynomial: if self.max_degree==-1: prod=[0]*(len(self.polynomial)+len(other.polynomial)-1) for i in range(len(self.polynomial)): for j in range(len(other.polynomial)): prod[i+j]+=self.polynomial[i]*other.polynomial[j] else: prod=[0]*min(len(self.polynomial)+len(other.polynomial)-1,self.max_degree+1) for i in range(len(self.polynomial)): for j in range(min(len(other.polynomial),self.max_degree+1-i)): prod[i+j]+=self.polynomial[i]*other.polynomial[j] if self.mod: for i in range(len(prod)): prod[i]%=self.mod while prod and abs(prod[-1])<self.eps: prod.pop() else: if self.mod: prod=[x*other%self.mod for x in self.polynomial] else: prod=[x*other for x in self.polynomial] while prod and abs(prod[-1])<self.eps: prod.pop() prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return prod def __matmul__(self,other): assert type(other)==Polynomial if self.mod: prod=NTT(self.polynomial,other.polynomial) else: prod=FFT(self.polynomial,other.polynomial) if self.max_degree!=-1 and len(prod)>self.max_degree+1: prod=prod[:self.max_degree+1] while prod and abs(prod[-1])<self.eps: prod.pop() prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return prod def __truediv__(self,other): if type(other)==Polynomial: assert other.polynomial for n in range(len(other.polynomial)): if self.eps<abs(other.polynomial[n]): break assert len(self.polynomial)>n for i in range(n): assert abs(self.polynomial[i])<self.eps self_polynomial=self.polynomial[n:] other_polynomial=other.polynomial[n:] if self.mod: inve=MOD(self.mod).Pow(other_polynomial[0],-1) else: inve=1/other_polynomial[0] quot=[] for i in range(len(self_polynomial)-len(other_polynomial)+1): if self.mod: quot.append(self_polynomial[i]*inve%self.mod) else: quot.append(self_polynomial[i]*inve) for j in range(len(other_polynomial)): self_polynomial[i+j]-=other_polynomial[j]*quot[-1] if self.mod: self_polynomial[i+j]%=self.mod for i in range(len(self_polynomial)-len(other_polynomial)+1,len(self_polynomial)): if self.eps<abs(self_polynomial[i]): assert self.max_degree!=-1 self_polynomial=self_polynomial[-len(other_polynomial)+1:] while len(quot)<=self.max_degree: self_polynomial.append(0) if self.mod: quot.append(self_polynomial[0]*inve%self.mod) self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1])%self.mod for i in range(1,len(self_polynomial))] else: quot.append(self_polynomial[0]*inve) self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1]) for i in range(1,len(self_polynomial))] break quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod) else: assert self.eps<abs(other) if self.mod: inve=MOD(self.mod).Pow(other,-1) quot=Polynomial([x*inve%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) else: quot=Polynomial([x/other for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) return quot def __floordiv__(self,other): assert type(other)==Polynomial quot=[0]*(len(self.polynomial)-len(other.polynomial)+1) rema=[x for x in self.polynomial] if self.mod: inve=MOD(self.mod).Pow(other.polynomial[-1],-1) for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] rema[i+j]%=self.mod else: inve=1/other.polynomial[-1] for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return quot def __mod__(self,other): assert type(other)==Polynomial quot=[0]*(len(self.polynomial)-len(other.polynomial)+1) rema=[x for x in self.polynomial] if self.mod: inve=MOD(self.mod).Pow(other.polynomial[-1],-1) for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] rema[i+j]%=self.mod rema.pop() else: inve=1/other.polynomial[-1] for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] rema.pop() rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return rema def __divmod__(self,other): assert type(other)==Polynomial quot=[0]*(len(self.polynomial)-len(other.polynomial)+1) rema=[x for x in self.polynomial] if self.mod: inve=MOD(self.mod).Pow(other.polynomial[-1],-1) for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] rema[i+j]%=self.mod rema.pop() else: inve=1/other.polynomial[-1] for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] rema.pop() quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod) rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return quot,rema def __neg__(self): if self.mod: nega=Polynomial([(-x)%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) else: nega=Polynomial([-x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) return nega def __pos__(self): posi=Polynomial([x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) return posi def __bool__(self): return self.polynomial def __getitem__(self,n): if n<=len(self.polynomial)-1: return self.polynomial[n] else: return 0 def __setitem__(self,n,x): if self.mod: x%=self.mod if self.max_degree==-1 or n<=self.max_degree: if n<=len(self.polynomial)-1: self.polynomial[n]=x elif self.eps<abs(x): self.polynomial+=[0]*(n-len(self.polynomial))+[x] def __call__(self,x): retu=0 pow_x=1 for i in range(len(self.polynomial)): retu+=pow_x*self.polynomial[i] pow_x*=x if self.mod: retu%=self.mod pow_x%=self.mod return retu def __str__(self): return "["+", ".join(map(str,self.polynomial))+"]" def Bostan_Mori(poly_deno,poly_nume,N,mod=0,fft=False,ntt=False): if type(poly_deno)==Polynomial: poly_deno=poly_deno.polynomial if type(poly_nume)==Polynomial: poly_nume=poly_nume.polynomial if ntt: convolve=NTT elif fft: convolve=FFT else: def convolve(poly_deno,poly_nume): conv=[0]*(len(poly_deno)+len(poly_nume)-1) for i in range(len(poly_deno)): for j in range(len(poly_nume)): conv[i+j]+=poly_deno[i]*poly_nume[j] if mod: for i in range(len(conv)): conv[i]%=mod return conv while N: poly_nume_=[-x if i%2 else x for i,x in enumerate(poly_nume)] if N%2: poly_deno=convolve(poly_deno,poly_nume_)[1::2] else: poly_deno=convolve(poly_deno,poly_nume_)[::2] poly_nume=convolve(poly_nume,poly_nume_)[::2] if fft and mod: for i in range(len(poly_deno)): poly_deno[i]%=mod for i in range(len(poly_nume)): poly_nume[i]%=mod N//=2 return poly_deno[0] mod=10**9+9 dp=[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 12, 12, 12, 12, 12, 16, 16, 16, 16, 16, 20, 20, 20, 20, 20, 25, 25, 25, 25, 25, 30, 30, 30, 30, 30, 37, 37, 37, 37, 37, 44, 44, 44, 44, 44, 53, 53, 53, 53, 53, 62, 62, 62, 62, 62, 73, 73, 73, 73, 73, 84, 84, 84, 84, 84, 97, 97, 97, 97, 97, 110, 110, 110, 110, 110, 125, 125, 125, 125, 125, 140, 140, 140, 140, 140, 159, 159, 159, 159, 159, 178, 178, 178, 178, 178, 201, 201, 201, 201, 201, 224, 224, 224, 224, 224, 251, 251, 251, 251, 251, 278, 278, 278, 278, 278, 309, 309, 309, 309, 309, 340, 340, 340, 340, 340, 375, 375, 375, 375, 375, 410, 410, 410, 410, 410, 451, 451, 451, 451, 451, 492, 492, 492, 492, 492, 539, 539, 539, 539, 539, 586, 586, 586, 586, 586, 639, 639, 639, 639, 639, 692, 692, 692, 692, 692, 751, 751, 751, 751, 751, 810, 810, 810, 810, 810, 875, 875, 875, 875, 875, 940, 940, 940, 940, 940, 1014, 1014, 1014, 1014, 1014, 1088, 1088, 1088, 1088, 1088, 1171, 1171, 1171, 1171, 1171, 1254, 1254, 1254, 1254, 1254, 1346, 1346, 1346, 1346, 1346, 1438, 1438, 1438, 1438, 1438, 1539, 1539, 1539, 1539, 1539, 1640, 1640, 1640, 1640, 1640, 1750, 1750, 1750, 1750, 1750, 1860, 1860, 1860, 1860, 1860, 1982, 1982, 1982, 1982, 1982, 2104, 2104, 2104, 2104, 2104, 2238, 2238, 2238, 2238, 2238, 2372, 2372, 2372, 2372, 2372, 2518, 2518, 2518, 2518, 2518, 2664, 2664, 2664, 2664, 2664, 2822, 2822, 2822, 2822, 2822, 2980, 2980, 2980, 2980, 2980, 3150, 3150, 3150, 3150, 3150, 3320, 3320, 3320, 3320, 3320, 3506, 3506, 3506, 3506, 3506, 3692, 3692, 3692, 3692, 3692, 3894, 3894, 3894, 3894, 3894, 4096, 4096, 4096, 4096, 4096, 4314, 4314, 4314, 4314, 4314, 4532, 4532, 4532, 4532, 4532, 4766, 4766, 4766, 4766, 4766, 5000, 5000, 5000, 5000, 5000, 5250, 5250, 5250, 5250, 5250, 5500, 5500, 5500, 5500, 5500, 5770, 5770, 5770, 5770, 5770, 6040, 6040, 6040, 6040, 6040, 6330, 6330, 6330, 6330, 6330, 6620, 6620, 6620, 6620, 6620, 6930, 6930, 6930, 6930, 6930, 7240, 7240, 7240, 7240, 7240, 7570, 7570, 7570, 7570, 7570, 7900, 7900, 7900, 7900, 7900, 8250, 8250, 8250, 8250, 8250, 8600, 8600, 8600, 8600, 8600, 8975, 8975, 8975, 8975, 8975, 9350, 9350, 9350, 9350, 9350, 9750, 9750, 9750, 9750, 9750, 10150, 10150, 10150, 10150, 10150, 10575, 10575, 10575, 10575, 10575, 11000, 11000, 11000, 11000, 11000, 11450, 11450, 11450, 11450, 11450, 11900, 11900, 11900, 11900, 11900, 12375, 12375, 12375, 12375, 12375, 12850, 12850, 12850, 12850, 12850, 13355, 13355, 13355, 13355, 13355, 13860, 13860, 13860, 13860, 13860, 14395, 14395, 14395, 14395, 14395, 14930, 14930, 14930, 14930, 14930, 15495, 15495, 15495, 15495, 15495, 16060, 16060, 16060, 16060, 16060, 16655, 16655, 16655, 16655, 16655, 17250, 17250, 17250, 17250, 17250, 17875, 17875, 17875, 17875, 17875, 18500, 18500, 18500, 18500, 18500, 19162, 19162, 19162, 19162, 19162, 19824, 19824, 19824, 19824, 19824, 20523, 20523, 20523, 20523, 20523, 21222, 21222, 21222, 21222, 21222, 21958, 21958, 21958, 21958, 21958, 22694, 22694, 22694, 22694, 22694, 23467, 23467, 23467, 23467, 23467, 24240, 24240, 24240, 24240, 24240, 25050, 25050, 25050, 25050, 25050, 25860, 25860, 25860, 25860, 25860, 26714, 26714, 26714, 26714, 26714, 27568, 27568, 27568, 27568, 27568, 28466, 28466, 28466, 28466, 28466, 29364, 29364, 29364, 29364, 29364, 30306, 30306, 30306, 30306, 30306, 31248, 31248, 31248, 31248, 31248, 32234, 32234, 32234, 32234, 32234, 33220, 33220, 33220, 33220, 33220, 34250, 34250, 34250, 34250, 34250, 35280, 35280, 35280, 35280, 35280, 36363, 36363, 36363, 36363, 36363, 37446, 37446, 37446, 37446, 37446, 38582, 38582, 38582, 38582, 38582, 39718, 39718, 39718, 39718, 39718, 40907, 40907, 40907, 40907, 40907, 42096, 42096, 42096, 42096, 42096, 43338, 43338, 43338, 43338, 43338, 44580, 44580, 44580, 44580, 44580, 45875, 45875, 45875, 45875, 45875, 47170, 47170, 47170, 47170, 47170, 48527, 48527, 48527, 48527, 48527, 49884, 49884, 49884, 49884, 49884, 51303, 51303, 51303, 51303, 51303, 52722, 52722, 52722, 52722, 52722, 54203, 54203, 54203, 54203, 54203, 55684, 55684, 55684, 55684, 55684, 57227, 57227, 57227, 57227, 57227, 58770, 58770, 58770, 58770, 58770, 60375, 60375, 60375, 60375, 60375, 61980, 61980, 61980, 61980, 61980, 63658, 63658, 63658, 63658, 63658, 65336, 65336, 65336, 65336, 65336, 67087, 67087, 67087, 67087, 67087, 68838, 68838, 68838, 68838, 68838, 70662, 70662, 70662, 70662, 70662, 72486, 72486, 72486, 72486, 72486, 74383, 74383, 74383, 74383, 74383, 76280, 76280, 76280, 76280, 76280, 78250, 78250, 78250, 78250, 78250, 80220, 80220, 80220, 80220, 80220, 82274, 82274, 82274, 82274, 82274, 84328, 84328, 84328, 84328, 84328, 86466, 86466, 86466, 86466, 86466, 88604, 88604, 88604, 88604, 88604, 90826, 90826, 90826, 90826, 90826, 93048, 93048, 93048, 93048, 93048, 95354, 95354, 95354, 95354, 95354, 97660, 97660, 97660, 97660, 97660, 100050, 100050, 100050, 100050, 100050, 102440, 102440, 102440, 102440, 102440, 104927, 104927, 104927, 104927, 104927, 107414, 107414, 107414, 107414, 107414, 109998, 109998, 109998, 109998, 109998, 112582, 112582, 112582, 112582, 112582, 115263, 115263, 115263, 115263, 115263, 117944, 117944, 117944, 117944, 117944, 120722, 120722, 120722, 120722, 120722, 123500, 123500, 123500, 123500, 123500, 126375, 126375, 126375, 126375, 126375, 129250, 129250, 129250, 129250, 129250, 132235, 132235, 132235, 132235, 132235, 135220, 135220, 135220, 135220, 135220, 138315, 138315, 138315, 138315, 138315, 141410, 141410, 141410, 141410, 141410, 144615, 144615, 144615, 144615, 144615, 147820, 147820, 147820, 147820, 147820, 151135, 151135, 151135, 151135, 151135, 154450, 154450, 154450, 154450, 154450, 157875, 157875, 157875, 157875, 157875, 161300, 161300, 161300, 161300, 161300, 164850, 164850, 164850, 164850, 164850, 168400, 168400, 168400, 168400, 168400, 172075, 172075, 172075, 172075, 172075, 175750, 175750, 175750, 175750, 175750, 179550, 179550, 179550, 179550, 179550, 183350, 183350, 183350, 183350, 183350, 187275, 187275, 187275, 187275, 187275, 191200, 191200, 191200, 191200, 191200, 195250, 195250, 195250, 195250, 195250, 199300, 199300, 199300, 199300, 199300, 203490, 203490, 203490, 203490, 203490, 207680, 207680, 207680, 207680, 207680, 212010, 212010, 212010, 212010, 212010, 216340, 216340, 216340, 216340, 216340, 220810, 220810, 220810, 220810, 220810, 225280, 225280, 225280, 225280, 225280, 229890, 229890, 229890, 229890, 229890, 234500, 234500, 234500, 234500, 234500, 239250, 239250, 239250, 239250, 239250, 244000, 244000, 244000, 244000, 244000, 248908, 248908, 248908, 248908, 248908, 253816, 253816, 253816, 253816, 253816, 258882, 258882, 258882, 258882, 258882, 263948, 263948, 263948, 263948, 263948, 269172, 269172, 269172, 269172, 269172, 274396, 274396, 274396, 274396, 274396, 279778, 279778, 279778, 279778, 279778, 285160, 285160, 285160, 285160, 285160, 290700, 290700, 290700, 290700, 290700, 296240, 296240, 296240, 296240, 296240, 301956, 301956, 301956, 301956, 301956, 307672, 307672, 307672, 307672, 307672, 313564, 313564, 313564, 313564, 313564, 319456, 319456, 319456, 319456, 319456, 325524, 325524, 325524, 325524, 325524, 331592, 331592, 331592, 331592, 331592, 337836, 337836, 337836, 337836, 337836, 344080, 344080, 344080, 344080, 344080, 350500, 350500, 350500, 350500, 350500, 356920, 356920, 356920, 356920, 356920, 363537, 363537, 363537, 363537, 363537, 370154, 370154, 370154, 370154, 370154, 376968, 376968, 376968, 376968, 376968, 383782, 383782, 383782, 383782, 383782, 390793, 390793, 390793, 390793, 390793, 397804, 397804, 397804, 397804, 397804, 405012, 405012, 405012, 405012, 405012, 412220, 412220, 412220, 412220, 412220, 419625, 419625, 419625, 419625, 419625, 427030, 427030, 427030, 427030, 427030, 434653, 434653, 434653, 434653, 434653, 442276, 442276, 442276, 442276, 442276, 450117, 450117, 450117, 450117, 450117, 457958, 457958, 457958, 457958, 457958, 466017, 466017, 466017, 466017, 466017, 474076, 474076, 474076, 474076, 474076, 482353, 482353, 482353, 482353, 482353, 490630, 490630, 490630, 490630, 490630, 499125, 499125, 499125, 499125, 499125, 507620, 507620, 507620, 507620, 507620, 516357, 516357, 516357, 516357, 516357, 525094, 525094, 525094, 525094, 525094, 534073, 534073, 534073, 534073, 534073, 543052, 543052, 543052, 543052, 543052, 552273, 552273, 552273, 552273, 552273, 561494, 561494, 561494, 561494, 561494, 570957, 570957, 570957, 570957, 570957, 580420, 580420, 580420, 580420, 580420, 590125, 590125, 590125, 590125, 590125, 599830, 599830, 599830, 599830, 599830, 609801, 609801, 609801, 609801, 609801, 619772, 619772, 619772, 619772, 619772, 630009, 630009, 630009, 630009, 630009, 640246, 640246, 640246, 640246, 640246, 650749, 650749, 650749, 650749, 650749, 661252, 661252, 661252, 661252, 661252, 672021, 672021, 672021, 672021, 672021, 682790, 682790, 682790, 682790, 682790, 693825, 693825, 693825, 693825, 693825, 704860, 704860, 704860, 704860, 704860, 716188, 716188, 716188, 716188, 716188, 727516, 727516, 727516, 727516, 727516, 739137, 739137, 739137, 739137, 739137, 750758, 750758, 750758, 750758, 750758, 762672, 762672, 762672, 762672, 762672, 774586, 774586, 774586, 774586, 774586, 786793, 786793, 786793, 786793, 786793, 799000, 799000, 799000, 799000, 799000, 811500, 811500, 811500, 811500, 811500, 824000, 824000, 824000, 824000, 824000, 836820, 836820, 836820, 836820, 836820, 849640, 849640, 849640, 849640, 849640, 862780, 862780, 862780, 862780, 862780, 875920, 875920, 875920, 875920, 875920, 889380, 889380, 889380, 889380, 889380, 902840, 902840, 902840, 902840, 902840, 916620, 916620, 916620, 916620, 916620, 930400, 930400, 930400, 930400, 930400, 944500, 944500, 944500, 944500, 944500, 958600, 958600, 958600, 958600, 958600, 973050, 973050, 973050, 973050, 973050, 987500, 987500, 987500, 987500, 987500, 1002300, 1002300, 1002300, 1002300, 1002300, 1017100, 1017100, 1017100, 1017100, 1017100, 1032250, 1032250, 1032250, 1032250, 1032250, 1047400, 1047400, 1047400, 1047400, 1047400, 1062900, 1062900, 1062900, 1062900, 1062900, 1078400, 1078400, 1078400, 1078400, 1078400, 1094250, 1094250, 1094250, 1094250, 1094250, 1110100, 1110100, 1110100, 1110100, 1110100, 1126330, 1126330, 1126330, 1126330, 1126330, 1142560, 1142560, 1142560, 1142560, 1142560, 1159170, 1159170, 1159170, 1159170, 1159170, 1175780, 1175780, 1175780, 1175780, 1175780, 1192770, 1192770, 1192770, 1192770, 1192770, 1209760, 1209760, 1209760, 1209760, 1209760, 1227130, 1227130, 1227130, 1227130, 1227130, 1244500, 1244500, 1244500, 1244500, 1244500, 1262250, 1262250, 1262250, 1262250, 1262250, 1280000, 1280000, 1280000, 1280000, 1280000, 1298164, 1298164, 1298164, 1298164, 1298164, 1316328, 1316328, 1316328, 1316328, 1316328, 1334906, 1334906, 1334906, 1334906, 1334906, 1353484, 1353484, 1353484, 1353484, 1353484, 1372476, 1372476, 1372476, 1372476, 1372476, 1391468, 1391468, 1391468, 1391468, 1391468, 1410874, 1410874, 1410874, 1410874, 1410874, 1430280, 1430280, 1430280, 1430280, 1430280, 1450100, 1450100, 1450100, 1450100, 1450100, 1469920, 1469920, 1469920, 1469920, 1469920, 1490188, 1490188, 1490188, 1490188, 1490188, 1510456, 1510456, 1510456, 1510456, 1510456, 1531172, 1531172, 1531172, 1531172, 1531172, 1551888, 1551888, 1551888, 1551888, 1551888, 1573052, 1573052, 1573052, 1573052, 1573052, 1594216, 1594216, 1594216, 1594216, 1594216, 1615828, 1615828, 1615828, 1615828, 1615828, 1637440, 1637440, 1637440, 1637440, 1637440, 1659500, 1659500, 1659500, 1659500, 1659500, 1681560, 1681560, 1681560, 1681560, 1681560, 1704106, 1704106, 1704106, 1704106, 1704106, 1726652, 1726652, 1726652, 1726652, 1726652, 1749684, 1749684, 1749684, 1749684, 1749684, 1772716, 1772716, 1772716, 1772716, 1772716, 1796234, 1796234, 1796234, 1796234, 1796234, 1819752, 1819752, 1819752, 1819752, 1819752, 1843756, 1843756, 1843756, 1843756, 1843756, 1867760, 1867760, 1867760, 1867760, 1867760, 1892250, 1892250, 1892250, 1892250, 1892250, 1916740, 1916740, 1916740, 1916740, 1916740, 1941754, 1941754, 1941754, 1941754, 1941754, 1966768, 1966768, 1966768, 1966768, 1966768, 1992306, 1992306, 1992306, 1992306, 1992306, 2017844, 2017844, 2017844, 2017844, 2017844, 2043906, 2043906, 2043906, 2043906, 2043906, 2069968, 2069968, 2069968, 2069968, 2069968, 2096554, 2096554, 2096554, 2096554, 2096554, 2123140, 2123140, 2123140, 2123140, 2123140, 2150250, 2150250, 2150250, 2150250, 2150250, 2177360, 2177360, 2177360, 2177360, 2177360, 2205036, 2205036, 2205036, 2205036, 2205036, 2232712, 2232712, 2232712, 2232712, 2232712, 2260954, 2260954, 2260954, 2260954, 2260954, 2289196, 2289196, 2289196, 2289196, 2289196, 2318004, 2318004, 2318004, 2318004, 2318004, 2346812, 2346812, 2346812, 2346812, 2346812, 2376186, 2376186, 2376186, 2376186, 2376186, 2405560, 2405560, 2405560, 2405560, 2405560, 2435500, 2435500, 2435500, 2435500, 2435500, 2465440, 2465440, 2465440, 2465440, 2465440, 2495988, 2495988, 2495988, 2495988, 2495988, 2526536, 2526536, 2526536, 2526536, 2526536, 2557692, 2557692, 2557692, 2557692, 2557692, 2588848, 2588848, 2588848, 2588848, 2588848, 2620612, 2620612, 2620612, 2620612, 2620612, 2652376, 2652376, 2652376, 2652376, 2652376, 2684748, 2684748, 2684748, 2684748, 2684748, 2717120, 2717120, 2717120, 2717120, 2717120, 2750100, 2750100, 2750100, 2750100, 2750100, 2783080, 2783080, 2783080, 2783080, 2783080, 2816714, 2816714, 2816714, 2816714, 2816714, 2850348, 2850348, 2850348, 2850348, 2850348, 2884636, 2884636, 2884636, 2884636, 2884636, 2918924, 2918924, 2918924, 2918924, 2918924, 2953866, 2953866, 2953866, 2953866, 2953866, 2988808, 2988808, 2988808, 2988808, 2988808, 3024404, 3024404, 3024404, 3024404, 3024404, 3060000, 3060000, 3060000, 3060000, 3060000, 3096250, 3096250, 3096250, 3096250, 3096250, 3132500, 3132500, 3132500, 3132500, 3132500, 3169450, 3169450, 3169450, 3169450, 3169450, 3206400, 3206400, 3206400, 3206400, 3206400, 3244050, 3244050, 3244050, 3244050, 3244050, 3281700, 3281700, 3281700, 3281700, 3281700, 3320050, 3320050, 3320050, 3320050, 3320050, 3358400, 3358400, 3358400, 3358400, 3358400, 3397450, 3397450, 3397450, 3397450, 3397450, 3436500, 3436500, 3436500, 3436500, 3436500, 3476250, 3476250, 3476250, 3476250, 3476250, 3516000, 3516000, 3516000, 3516000, 3516000, 3556500, 3556500, 3556500, 3556500, 3556500, 3597000, 3597000, 3597000, 3597000, 3597000, 3638250, 3638250, 3638250, 3638250, 3638250, 3679500, 3679500, 3679500, 3679500, 3679500, 3721500, 3721500, 3721500, 3721500, 3721500, 3763500, 3763500, 3763500, 3763500, 3763500, 3806250, 3806250, 3806250, 3806250, 3806250, 3849000, 3849000, 3849000, 3849000, 3849000, 3892500, 3892500, 3892500, 3892500, 3892500, 3936000, 3936000, 3936000, 3936000, 3936000, 3980300, 3980300, 3980300, 3980300, 3980300, 4024600, 4024600, 4024600, 4024600, 4024600, 4069700, 4069700, 4069700, 4069700, 4069700, 4114800, 4114800, 4114800, 4114800, 4114800, 4160700, 4160700, 4160700, 4160700, 4160700, 4206600, 4206600, 4206600, 4206600, 4206600, 4253300, 4253300, 4253300, 4253300, 4253300, 4300000, 4300000, 4300000, 4300000, 4300000, 4347500, 4347500, 4347500, 4347500, 4347500, 4395000, 4395000, 4395000, 4395000, 4395000, 4443355, 4443355, 4443355, 4443355, 4443355, 4491710, 4491710, 4491710, 4491710, 4491710, 4540920, 4540920, 4540920, 4540920, 4540920, 4590130, 4590130, 4590130, 4590130, 4590130, 4640195, 4640195, 4640195, 4640195, 4640195, 4690260, 4690260, 4690260, 4690260, 4690260, 4741180, 4741180, 4741180, 4741180, 4741180, 4792100, 4792100, 4792100, 4792100, 4792100, 4843875, 4843875, 4843875, 4843875, 4843875, 4895650, 4895650, 4895650, 4895650, 4895650, 4948335, 4948335, 4948335, 4948335, 4948335, 5001020, 5001020, 5001020, 5001020, 5001020, 5054615, 5054615, 5054615, 5054615, 5054615, 5108210, 5108210, 5108210, 5108210, 5108210, 5162715, 5162715, 5162715, 5162715, 5162715, 5217220, 5217220, 5217220, 5217220, 5217220, 5272635, 5272635, 5272635, 5272635, 5272635, 5328050, 5328050, 5328050, 5328050, 5328050, 5384375, 5384375, 5384375, 5384375, 5384375, 5440700, 5440700, 5440700, 5440700, 5440700, 5497995, 5497995, 5497995, 5497995, 5497995, 5555290, 5555290, 5555290, 5555290, 5555290, 5613555, 5613555, 5613555, 5613555, 5613555, 5671820, 5671820, 5671820, 5671820, 5671820, 5731055, 5731055, 5731055, 5731055, 5731055, 5790290, 5790290, 5790290, 5790290, 5790290, 5850495, 5850495, 5850495, 5850495, 5850495, 5910700, 5910700, 5910700, 5910700, 5910700, 5971875, 5971875, 5971875, 5971875, 5971875, 6033050, 6033050, 6033050, 6033050, 6033050, 6095255, 6095255, 6095255, 6095255, 6095255, 6157460, 6157460, 6157460, 6157460, 6157460, 6220695, 6220695, 6220695, 6220695, 6220695, 6283930, 6283930, 6283930, 6283930, 6283930, 6348195, 6348195, 6348195, 6348195, 6348195, 6412460, 6412460, 6412460, 6412460, 6412460, 6477755, 6477755, 6477755, 6477755, 6477755, 6543050, 6543050, 6543050, 6543050, 6543050, 6609375, 6609375, 6609375, 6609375, 6609375, 6675700, 6675700, 6675700, 6675700, 6675700, 6743120, 6743120, 6743120, 6743120, 6743120, 6810540, 6810540, 6810540, 6810540, 6810540, 6879055, 6879055, 6879055, 6879055, 6879055, 6947570, 6947570, 6947570, 6947570, 6947570, 7017180, 7017180, 7017180, 7017180, 7017180, 7086790, 7086790, 7086790, 7086790, 7086790, 7157495, 7157495, 7157495, 7157495, 7157495, 7228200, 7228200, 7228200, 7228200, 7228200, 7300000, 7300000, 7300000, 7300000, 7300000, 7371800, 7371800, 7371800, 7371800, 7371800, 7444760, 7444760, 7444760, 7444760, 7444760, 7517720, 7517720, 7517720, 7517720, 7517720, 7591840, 7591840, 7591840, 7591840, 7591840, 7665960, 7665960, 7665960, 7665960, 7665960, 7741240, 7741240, 7741240, 7741240, 7741240, 7816520, 7816520, 7816520, 7816520, 7816520, 7892960, 7892960, 7892960, 7892960, 7892960, 7969400, 7969400, 7969400, 7969400, 7969400, 8047000, 8047000, 8047000, 8047000, 8047000, 8124600, 8124600, 8124600, 8124600, 8124600, 8203430, 8203430, 8203430, 8203430, 8203430, 8282260, 8282260, 8282260, 8282260, 8282260, 8362320, 8362320, 8362320, 8362320, 8362320, 8442380, 8442380, 8442380, 8442380, 8442380, 8523670, 8523670, 8523670, 8523670, 8523670, 8604960, 8604960, 8604960, 8604960, 8604960, 8687480, 8687480, 8687480, 8687480, 8687480, 8770000, 8770000, 8770000, 8770000, 8770000, 8853750, 8853750, 8853750, 8853750, 8853750, 8937500, 8937500, 8937500, 8937500, 8937500, 9022550, 9022550, 9022550, 9022550, 9022550, 9107600, 9107600, 9107600, 9107600, 9107600, 9193950, 9193950, 9193950, 9193950, 9193950, 9280300, 9280300, 9280300, 9280300, 9280300, 9367950, 9367950, 9367950, 9367950, 9367950, 9455600, 9455600, 9455600, 9455600, 9455600, 9544550, 9544550, 9544550, 9544550, 9544550, 9633500, 9633500, 9633500, 9633500, 9633500, 9723750, 9723750, 9723750, 9723750, 9723750, 9814000, 9814000, 9814000, 9814000, 9814000, 9905625, 9905625, 9905625, 9905625, 9905625, 9997250, 9997250, 9997250, 9997250, 9997250, 10090250, 10090250, 10090250, 10090250, 10090250, 10183250, 10183250, 10183250, 10183250, 10183250, 10277625, 10277625, 10277625, 10277625, 10277625, 10372000, 10372000, 10372000, 10372000, 10372000, 10467750, 10467750, 10467750, 10467750, 10467750, 10563500, 10563500, 10563500, 10563500, 10563500, 10660625, 10660625, 10660625, 10660625, 10660625, 10757750, 10757750, 10757750, 10757750, 10757750, 10856325, 10856325, 10856325, 10856325, 10856325, 10954900, 10954900, 10954900, 10954900, 10954900, 11054925, 11054925, 11054925, 11054925, 11054925, 11154950, 11154950, 11154950, 11154950, 11154950, 11256425, 11256425, 11256425, 11256425, 11256425, 11357900, 11357900, 11357900, 11357900, 11357900, 11460825, 11460825, 11460825, 11460825, 11460825, 11563750, 11563750, 11563750, 11563750, 11563750, 11668125, 11668125, 11668125, 11668125, 11668125, 11772500, 11772500, 11772500, 11772500, 11772500, 11878406, 11878406, 11878406, 11878406, 11878406, 11984312, 11984312, 11984312, 11984312, 11984312, 12091749, 12091749, 12091749, 12091749, 12091749, 12199186, 12199186, 12199186, 12199186, 12199186, 12308154, 12308154, 12308154, 12308154, 12308154, 12417122, 12417122, 12417122, 12417122, 12417122, 12527621, 12527621, 12527621, 12527621, 12527621, 12638120, 12638120, 12638120, 12638120, 12638120, 12750150, 12750150, 12750150, 12750150, 12750150, 12862180, 12862180, 12862180, 12862180, 12862180, 12975822, 12975822, 12975822, 12975822, 12975822, 13089464, 13089464, 13089464, 13089464, 13089464, 13204718, 13204718, 13204718, 13204718, 13204718, 13319972, 13319972, 13319972, 13319972, 13319972, 13436838, 13436838, 13436838, 13436838, 13436838, 13553704, 13553704, 13553704, 13553704, 13553704, 13672182, 13672182, 13672182, 13672182, 13672182, 13790660, 13790660, 13790660, 13790660, 13790660, 13910750, 13910750, 13910750, 13910750, 13910750, 14030840, 14030840, 14030840, 14030840, 14030840, 14152629, 14152629, 14152629, 14152629, 14152629, 14274418, 14274418, 14274418, 14274418, 14274418, 14397906, 14397906, 14397906, 14397906, 14397906, 14521394, 14521394, 14521394, 14521394, 14521394, 14646581, 14646581, 14646581, 14646581, 14646581, 14771768, 14771768, 14771768, 14771768, 14771768, 14898654, 14898654, 14898654, 14898654, 14898654, 15025540, 15025540, 15025540, 15025540, 15025540, 15154125, 15154125, 15154125, 15154125, 15154125, 15282710, 15282710, 15282710, 15282710, 15282710, 15413081, 15413081, 15413081, 15413081, 15413081, 15543452, 15543452, 15543452, 15543452, 15543452, 15675609, 15675609, 15675609, 15675609, 15675609, 15807766, 15807766, 15807766, 15807766, 15807766, 15941709, 15941709, 15941709, 15941709, 15941709, 16075652, 16075652, 16075652, 16075652, 16075652, 16211381, 16211381, 16211381, 16211381, 16211381, 16347110, 16347110, 16347110, 16347110, 16347110, 16484625, 16484625, 16484625, 16484625, 16484625, 16622140, 16622140, 16622140, 16622140, 16622140, 16761534, 16761534, 16761534, 16761534, 16761534, 16900928, 16900928, 16900928, 16900928, 16900928, 17042201, 17042201, 17042201, 17042201, 17042201, 17183474, 17183474, 17183474, 17183474, 17183474, 17326626, 17326626, 17326626, 17326626, 17326626, 17469778, 17469778, 17469778, 17469778, 17469778, 17614809, 17614809, 17614809, 17614809, 17614809, 17759840, 17759840, 17759840, 17759840, 17759840, 17906750, 17906750, 17906750, 17906750, 17906750, 18053660, 18053660, 18053660, 18053660, 18053660, 18202542, 18202542, 18202542, 18202542, 18202542, 18351424, 18351424, 18351424, 18351424, 18351424, 18502278, 18502278, 18502278, 18502278, 18502278, 18653132, 18653132, 18653132, 18653132, 18653132, 18805958, 18805958, 18805958, 18805958, 18805958, 18958784, 18958784, 18958784, 18958784, 18958784, 19113582, 19113582, 19113582, 19113582, 19113582, 19268380, 19268380, 19268380, 19268380, 19268380, 19425150, 19425150, 19425150, 19425150, 19425150, 19581920, 19581920, 19581920, 19581920, 19581920, 19740761, 19740761, 19740761, 19740761, 19740761, 19899602, 19899602, 19899602, 19899602, 19899602, 20060514, 20060514, 20060514, 20060514, 20060514, 20221426, 20221426, 20221426, 20221426, 20221426, 20384409, 20384409, 20384409, 20384409, 20384409, 20547392, 20547392, 20547392, 20547392, 20547392, 20712446, 20712446, 20712446, 20712446, 20712446, 20877500, 20877500, 20877500, 20877500, 20877500, 21044625, 21044625, 21044625, 21044625, 21044625, 21211750, 21211750, 21211750, 21211750, 21211750, 21381045, 21381045, 21381045, 21381045, 21381045, 21550340, 21550340, 21550340, 21550340, 21550340, 21721805, 21721805, 21721805, 21721805, 21721805, 21893270, 21893270, 21893270, 21893270, 21893270, 22066905, 22066905, 22066905, 22066905, 22066905, 22240540, 22240540, 22240540, 22240540, 22240540, 22416345, 22416345, 22416345, 22416345, 22416345, 22592150, 22592150, 22592150, 22592150, 22592150, 22770125, 22770125, 22770125, 22770125, 22770125, 22948100, 22948100, 22948100, 22948100, 22948100, 23128350, 23128350, 23128350, 23128350, 23128350, 23308600, 23308600, 23308600, 23308600, 23308600, 23491125, 23491125, 23491125, 23491125, 23491125, 23673650, 23673650, 23673650, 23673650, 23673650, 23858450, 23858450, 23858450, 23858450, 23858450, 24043250, 24043250, 24043250, 24043250, 24043250, 24230325, 24230325, 24230325, 24230325, 24230325, 24417400, 24417400, 24417400, 24417400, 24417400, 24606750, 24606750, 24606750, 24606750, 24606750, 24796100, 24796100, 24796100, 24796100, 24796100, 24987830, 24987830, 24987830, 24987830, 24987830, 25179560, 25179560, 25179560, 25179560, 25179560, 25373670, 25373670, 25373670, 25373670, 25373670, 25567780, 25567780, 25567780, 25567780, 25567780, 25764270, 25764270, 25764270, 25764270, 25764270, 25960760, 25960760, 25960760, 25960760, 25960760, 26159630, 26159630, 26159630, 26159630, 26159630, 26358500, 26358500, 26358500, 26358500, 26358500, 26559750, 26559750, 26559750, 26559750, 26559750, 26761000, 26761000, 26761000, 26761000, 26761000] LI={r:Lagrange_Interpolation(Y=[dp[i] for i in range(r,3000,500)],x0=r,xd=500,mod=mod) for r in range(500)} T=int(readline()) for _ in range(T): M=int(readline()) r=M%500 ans=LI[r][M] print(ans)