結果
問題 | No.42 貯金箱の溜息 |
ユーザー |
![]() |
提出日時 | 2021-08-21 08:00:16 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 254 ms / 5,000 ms |
コード長 | 44,980 bytes |
コンパイル時間 | 207 ms |
コンパイル使用メモリ | 86,400 KB |
実行使用メモリ | 93,316 KB |
最終ジャッジ日時 | 2024-10-14 16:46:17 |
合計ジャッジ時間 | 1,691 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 3 |
ソースコード
import bisectimport copyimport decimalimport fractionsimport functoolsimport heapqimport itertoolsimport mathimport randomimport sysfrom collections import Counter,deque,defaultdictfrom functools import lru_cache,reducefrom heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_maxdef _heappush_max(heap,item):heap.append(item)heapq._siftdown_max(heap, 0, len(heap)-1)def _heappushpop_max(heap, item):if heap and item < heap[0]:item, heap[0] = heap[0], itemheapq._siftup_max(heap, 0)return itemfrom math import degrees, gcd as GCDread=sys.stdin.readreadline=sys.stdin.readlinereadlines=sys.stdin.readlinesdef Extended_Euclid(n,m):stack=[]while m:stack.append((n,m))n,m=m,n%mif n>=0:x,y=1,0else:x,y=-1,0for i in range(len(stack)-1,-1,-1):n,m=stack[i]x,y=y,x-(n//m)*yreturn x,yclass MOD:def __init__(self,mod):self.mod=moddef Pow(self,a,n):a%=self.modif n>=0:return pow(a,n,self.mod)else:assert math.gcd(a,self.mod)==1x=Extended_Euclid(a,self.mod)[0]return pow(x,-n,self.mod)def Build_Fact(self,N):assert N>=0self.factorial=[1]for i in range(1,N+1):self.factorial.append((self.factorial[-1]*i)%self.mod)self.factorial_inv=[None]*(N+1)self.factorial_inv[-1]=self.Pow(self.factorial[-1],-1)for i in range(N-1,-1,-1):self.factorial_inv[i]=(self.factorial_inv[i+1]*(i+1))%self.modreturn self.factorial_invdef Fact(self,N):return self.factorial[N]def Fact_Inv(self,N):return self.factorial_inv[N]def Comb(self,N,K):if K<0 or K>N:return 0s=self.factorial[N]s=(s*self.factorial_inv[K])%self.mods=(s*self.factorial_inv[N-K])%self.modreturn sclass Lagrange_Interpolation:def __init__(self,X=False,Y=False,x0=None,xd=None,mod=0):self.degree=len(Y)-1self.mod=modassert self.degree<self.modif x0!=None and xd!=None:assert xd>0self.X=[(x0+i*xd)%self.mod for i in range(self.degree+1)]fact_inve=1for i in range(1,self.degree+1):fact_inve*=i*xdfact_inve%=self.modfact_inve=MOD(self.mod).Pow(fact_inve,-1)self.coefficient=[y for y in Y]for i in range(self.degree-1,-1,-2):self.coefficient[i]*=-1for i in range(self.degree,-1,-1):self.coefficient[i]*=fact_inveself.coefficient[i]%=self.modself.coefficient[self.degree-i]*=fact_inveself.coefficient[self.degree-i]%=self.modfact_inve*=i*xdfact_inve%=self.modelse:self.X=Xassert len(self.X)==self.degree+1self.coefficient=[y for y in Y]for i in range(self.degree+1):for j in range(self.degree+1):if i==j:continueself.coefficient[i]*=X[i]-X[j]self.coefficient%=self.moddef __getitem__(self,N):N%=self.modXX=[N-x for x in self.X]XX_left=[1]*(self.degree+2)for i in range(1,self.degree+2):XX_left[i]=XX_left[i-1]*XX[i-1]%self.modXX_right=[1]*(self.degree+2)for i in range(self.degree,-1,-1):XX_right[i]=XX_right[i+1]*XX[i]%self.modreturn sum(XX_left[i]*XX_right[i+1]*self.coefficient[i] for i in range(self.degree+1))%self.moddef NTT(polynomial1,polynomial2):prim_root=3prim_root_inve=MOD(mod).Pow(prim_root,-1)def DFT(polynomial,inverse=False):dft=polynomial+[0]*((1<<n)-len(polynomial))if inverse:for bit in range(1,n+1):a=1<<bit-1x=pow(prim_root,mod-1>>bit,mod)U=[1]for _ in range(a):U.append(U[-1]*x%mod)for i in range(1<<n-bit):for j in range(a):s=i*2*a+jt=s+adft[s],dft[t]=(dft[s]+dft[t]*U[j])%mod,(dft[s]-dft[t]*U[j])%modelse:for bit in range(n,0,-1):a=1<<bit-1x=pow(prim_root_inve,mod-1>>bit,mod)U=[1]for _ in range(a):U.append(U[-1]*x%mod)for i in range(1<<n-bit):for j in range(a):s=i*2*a+jt=s+adft[s],dft[t]=(dft[s]+dft[t])%mod,U[j]*(dft[s]-dft[t])%modreturn dftN=len(polynomial1)+len(polynomial2)-1n=(N-1).bit_length()ntt=[x*y%mod for x,y in zip(DFT(polynomial1),DFT(polynomial2))]ntt=DFT(ntt,inverse=True)x=pow((mod+1)//2,n)ntt=[ntt[i]*x%mod for i in range(N)]return nttdef FFT(polynomial1,polynomial2,digit=10**5):def DFT(polynomial,n,inverse=False):N=len(polynomial)if inverse:primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)]else:primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)]dft=polynomial+[0]*((1<<n)-N)if inverse:for bit in range(1,n+1):a=1<<bit-1for i in range(1<<n-bit):for j in range(a):s=i*2*a+jt=s+adft[s],dft[t]=dft[s]+dft[t]*primitive_root[j<<n-bit],dft[s]-dft[t]*primitive_root[j<<n-bit]else:for bit in range(n,0,-1):a=1<<bit-1for i in range(1<<n-bit):for j in range(a):s=i*2*a+jt=s+adft[s],dft[t]=dft[s]+dft[t],primitive_root[j<<n-bit]*(dft[s]-dft[t])return dftdef FFT_(polynomial1,polynomial2):N1=len(polynomial1)N2=len(polynomial2)N=N1+N2-1n=(N-1).bit_length()fft=[x*y for x,y in zip(DFT(polynomial1,n),DFT(polynomial2,n))]fft=DFT(fft,n,inverse=True)fft=[round((fft[i]/(1<<n)).real) for i in range(N)]return fftN1=len(polynomial1)N2=len(polynomial2)N=N1+N2-1polynomial11,polynomial12=[None]*N1,[None]*N1polynomial21,polynomial22=[None]*N2,[None]*N2for i in range(N1):polynomial11[i],polynomial12[i]=divmod(polynomial1[i],digit)for i in range(N2):polynomial21[i],polynomial22[i]=divmod(polynomial2[i],digit)polynomial=[0]*(N)a=digit**2-digitfor i,x in enumerate(FFT_(polynomial11,polynomial21)):polynomial[i]+=x*aa=digit-1for i,x in enumerate(FFT_(polynomial12,polynomial22)):polynomial[i]-=x*afor i,x in enumerate(FFT_([x1+x2 for x1,x2 in zip(polynomial11,polynomial12)],[x1+x2 for x1,x2 in zip(polynomial21,polynomial22)])):polynomial[i]+=x*digitreturn polynomialdef Primitive_Root(p):if p==2:return 1if p==167772161:return 3if p==469762049:return 3if p==754974721:return 11if p==998244353:return 3if p==10**9+7:return 5divisors=[2]pp=(p-1)//2while pp%2==0:pp//=2for d in range(3,pp+1,2):if d**2>pp:breakif pp%d==0:divisors.append(d)while pp%d==0:pp//=dif pp>1:divisors.append(pp)primitive_root=2while True:for d in divisors:if pow(primitive_root,(p-1)//d,p)==1:breakelse:return primitive_rootprimitive_root+=1class Polynomial:def __init__(self,polynomial,max_degree=-1,eps=1e-12,mod=0):self.max_degree=max_degreeif self.max_degree!=-1 and len(polynomial)>self.max_degree+1:self.polynomial=polynomial[:self.max_degree+1]else:self.polynomial=polynomialself.mod=modself.eps=epsdef __eq__(self,other):if type(other)!=Polynomial:return Falseif len(self.polynomial)!=len(other.polynomial):return Falsefor i in range(len(self.polynomial)):if abs(self.polynomial[i]-other.polynomial[i])>self.eps:return Falsereturn Truedef __ne__(self,other):if type(other)!=Polynomial:return Trueif len(self.polynomial)!=len(other.polynomial):return Truefor i in range(len(self.polynomial)):if abs(self.polynomial[i]-other.polynomial[i])>self.eps:return Truereturn Falsedef __add__(self,other):assert type(other)==Polynomialsumm=[0]*max(len(self.polynomial),len(other.polynomial))for i in range(len(self.polynomial)):summ[i]+=self.polynomial[i]for i in range(len(other.polynomial)):summ[i]+=other.polynomial[i]if self.mod:for i in range(len(summ)):summ[i]%=self.modwhile summ and abs(summ[-1])<self.eps:summ.pop()summ=Polynomial(summ,max_degree=self.max_degree,eps=self.eps,mod=self.mod)return summdef __sub__(self,other):assert type(other)==Polynomialdiff=[0]*max(len(self.polynomial),len(other.polynomial))for i in range(len(self.polynomial)):diff[i]+=self.polynomial[i]for i in range(len(other.polynomial)):diff[i]-=other.polynomial[i]if self.mod:for i in range(len(diff)):diff[i]%=self.modwhile diff and abs(diff[-1])<self.eps:diff.pop()diff=Polynomial(diff,max_degree=self.max_degree,eps=self.eps,mod=self.mod)return diffdef __mul__(self,other):if type(other)==Polynomial:if self.max_degree==-1:prod=[0]*(len(self.polynomial)+len(other.polynomial)-1)for i in range(len(self.polynomial)):for j in range(len(other.polynomial)):prod[i+j]+=self.polynomial[i]*other.polynomial[j]else:prod=[0]*min(len(self.polynomial)+len(other.polynomial)-1,self.max_degree+1)for i in range(len(self.polynomial)):for j in range(min(len(other.polynomial),self.max_degree+1-i)):prod[i+j]+=self.polynomial[i]*other.polynomial[j]if self.mod:for i in range(len(prod)):prod[i]%=self.modwhile prod and abs(prod[-1])<self.eps:prod.pop()else:if self.mod:prod=[x*other%self.mod for x in self.polynomial]else:prod=[x*other for x in self.polynomial]while prod and abs(prod[-1])<self.eps:prod.pop()prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod)return proddef __matmul__(self,other):assert type(other)==Polynomialif self.mod:prod=NTT(self.polynomial,other.polynomial)else:prod=FFT(self.polynomial,other.polynomial)if self.max_degree!=-1 and len(prod)>self.max_degree+1:prod=prod[:self.max_degree+1]while prod and abs(prod[-1])<self.eps:prod.pop()prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod)return proddef __truediv__(self,other):if type(other)==Polynomial:assert other.polynomialfor n in range(len(other.polynomial)):if self.eps<abs(other.polynomial[n]):breakassert len(self.polynomial)>nfor i in range(n):assert abs(self.polynomial[i])<self.epsself_polynomial=self.polynomial[n:]other_polynomial=other.polynomial[n:]if self.mod:inve=MOD(self.mod).Pow(other_polynomial[0],-1)else:inve=1/other_polynomial[0]quot=[]for i in range(len(self_polynomial)-len(other_polynomial)+1):if self.mod:quot.append(self_polynomial[i]*inve%self.mod)else:quot.append(self_polynomial[i]*inve)for j in range(len(other_polynomial)):self_polynomial[i+j]-=other_polynomial[j]*quot[-1]if self.mod:self_polynomial[i+j]%=self.modfor i in range(len(self_polynomial)-len(other_polynomial)+1,len(self_polynomial)):if self.eps<abs(self_polynomial[i]):assert self.max_degree!=-1self_polynomial=self_polynomial[-len(other_polynomial)+1:]while len(quot)<=self.max_degree:self_polynomial.append(0)if self.mod:quot.append(self_polynomial[0]*inve%self.mod)self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1])%self.mod for i in range(1,len(self_polynomial))]else:quot.append(self_polynomial[0]*inve)self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1]) for i in range(1,len(self_polynomial))]breakquot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod)else:assert self.eps<abs(other)if self.mod:inve=MOD(self.mod).Pow(other,-1)quot=Polynomial([x*inve%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)else:quot=Polynomial([x/other for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)return quotdef __floordiv__(self,other):assert type(other)==Polynomialquot=[0]*(len(self.polynomial)-len(other.polynomial)+1)rema=[x for x in self.polynomial]if self.mod:inve=MOD(self.mod).Pow(other.polynomial[-1],-1)for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):quot[i]=rema[i+len(other.polynomial)-1]*inve%self.modfor j in range(len(other.polynomial)):rema[i+j]-=quot[i]*other.polynomial[j]rema[i+j]%=self.modelse:inve=1/other.polynomial[-1]for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):quot[i]=rema[i+len(other.polynomial)-1]*invefor j in range(len(other.polynomial)):rema[i+j]-=quot[i]*other.polynomial[j]quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod)return quotdef __mod__(self,other):assert type(other)==Polynomialquot=[0]*(len(self.polynomial)-len(other.polynomial)+1)rema=[x for x in self.polynomial]if self.mod:inve=MOD(self.mod).Pow(other.polynomial[-1],-1)for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):quot[i]=rema[i+len(other.polynomial)-1]*inve%self.modfor j in range(len(other.polynomial)):rema[i+j]-=quot[i]*other.polynomial[j]rema[i+j]%=self.modrema.pop()else:inve=1/other.polynomial[-1]for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):quot[i]=rema[i+len(other.polynomial)-1]*invefor j in range(len(other.polynomial)):rema[i+j]-=quot[i]*other.polynomial[j]rema.pop()rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod)return remadef __divmod__(self,other):assert type(other)==Polynomialquot=[0]*(len(self.polynomial)-len(other.polynomial)+1)rema=[x for x in self.polynomial]if self.mod:inve=MOD(self.mod).Pow(other.polynomial[-1],-1)for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):quot[i]=rema[i+len(other.polynomial)-1]*inve%self.modfor j in range(len(other.polynomial)):rema[i+j]-=quot[i]*other.polynomial[j]rema[i+j]%=self.modrema.pop()else:inve=1/other.polynomial[-1]for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):quot[i]=rema[i+len(other.polynomial)-1]*invefor j in range(len(other.polynomial)):rema[i+j]-=quot[i]*other.polynomial[j]rema.pop()quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod)rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod)return quot,remadef __neg__(self):if self.mod:nega=Polynomial([(-x)%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)else:nega=Polynomial([-x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)return negadef __pos__(self):posi=Polynomial([x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)return posidef __bool__(self):return self.polynomialdef __getitem__(self,n):if n<=len(self.polynomial)-1:return self.polynomial[n]else:return 0def __setitem__(self,n,x):if self.mod:x%=self.modif self.max_degree==-1 or n<=self.max_degree:if n<=len(self.polynomial)-1:self.polynomial[n]=xelif self.eps<abs(x):self.polynomial+=[0]*(n-len(self.polynomial))+[x]def __call__(self,x):retu=0pow_x=1for i in range(len(self.polynomial)):retu+=pow_x*self.polynomial[i]pow_x*=xif self.mod:retu%=self.modpow_x%=self.modreturn retudef __str__(self):return "["+", ".join(map(str,self.polynomial))+"]"def Bostan_Mori(poly_deno,poly_nume,N,mod=0,fft=False,ntt=False):if type(poly_deno)==Polynomial:poly_deno=poly_deno.polynomialif type(poly_nume)==Polynomial:poly_nume=poly_nume.polynomialif ntt:convolve=NTTelif fft:convolve=FFTelse:def convolve(poly_deno,poly_nume):conv=[0]*(len(poly_deno)+len(poly_nume)-1)for i in range(len(poly_deno)):for j in range(len(poly_nume)):conv[i+j]+=poly_deno[i]*poly_nume[j]if mod:for i in range(len(conv)):conv[i]%=modreturn convwhile N:poly_nume_=[-x if i%2 else x for i,x in enumerate(poly_nume)]if N%2:poly_deno=convolve(poly_deno,poly_nume_)[1::2]else:poly_deno=convolve(poly_deno,poly_nume_)[::2]poly_nume=convolve(poly_nume,poly_nume_)[::2]if fft and mod:for i in range(len(poly_deno)):poly_deno[i]%=modfor i in range(len(poly_nume)):poly_nume[i]%=modN//=2return poly_deno[0]mod=10**9+9dp=[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 12, 12, 12, 12, 12, 16, 16, 16, 16, 16, 20, 20, 20, 20, 20, 25, 25, 25, 25, 25, 30, 30, 30, 30, 30, 37, 37, 37, 37, 37, 44, 44, 44, 44, 44, 53, 53, 53, 53, 53, 62, 62,62, 62, 62, 73, 73, 73, 73, 73, 84, 84, 84, 84, 84, 97, 97, 97, 97, 97, 110, 110, 110, 110, 110, 125, 125, 125, 125, 125,140, 140, 140, 140, 140, 159, 159, 159, 159, 159, 178, 178, 178, 178, 178, 201, 201, 201, 201, 201, 224, 224, 224, 224, 224, 251, 251, 251, 251, 251,278, 278, 278, 278, 278, 309, 309, 309, 309, 309, 340, 340, 340, 340, 340, 375, 375, 375, 375, 375, 410, 410, 410, 410, 410, 451, 451, 451, 451,451, 492, 492, 492, 492, 492, 539, 539, 539, 539, 539, 586, 586, 586, 586, 586, 639, 639, 639, 639, 639, 692, 692, 692, 692, 692, 751, 751, 751,751, 751, 810, 810, 810, 810, 810, 875, 875, 875, 875, 875, 940, 940, 940, 940, 940, 1014, 1014, 1014, 1014, 1014, 1088, 1088, 1088, 1088, 1088,1171, 1171, 1171, 1171, 1171, 1254, 1254, 1254, 1254, 1254, 1346, 1346, 1346, 1346, 1346, 1438, 1438, 1438, 1438, 1438, 1539, 1539, 1539, 1539,1539, 1640, 1640, 1640, 1640, 1640, 1750, 1750, 1750, 1750, 1750, 1860, 1860, 1860, 1860, 1860, 1982, 1982, 1982, 1982, 1982, 2104, 2104, 2104,2104, 2104, 2238, 2238, 2238, 2238, 2238, 2372, 2372, 2372, 2372, 2372, 2518, 2518, 2518, 2518, 2518, 2664, 2664, 2664, 2664, 2664, 2822, 2822,2822, 2822, 2822, 2980, 2980, 2980, 2980, 2980, 3150, 3150, 3150, 3150, 3150, 3320, 3320, 3320, 3320, 3320, 3506, 3506, 3506, 3506, 3506, 3692,3692, 3692, 3692, 3692, 3894, 3894, 3894, 3894, 3894, 4096, 4096, 4096, 4096, 4096, 4314, 4314, 4314, 4314, 4314, 4532, 4532, 4532, 4532, 4532,4766, 4766, 4766, 4766, 4766, 5000, 5000, 5000, 5000, 5000, 5250, 5250, 5250, 5250, 5250, 5500, 5500, 5500, 5500, 5500, 5770, 5770, 5770, 5770,5770, 6040, 6040, 6040, 6040, 6040, 6330, 6330, 6330, 6330, 6330, 6620, 6620, 6620, 6620, 6620, 6930, 6930, 6930, 6930, 6930, 7240, 7240, 7240,7240, 7240, 7570, 7570, 7570, 7570, 7570, 7900, 7900, 7900, 7900, 7900, 8250, 8250, 8250, 8250, 8250, 8600, 8600, 8600, 8600, 8600, 8975, 8975,8975, 8975, 8975, 9350, 9350, 9350, 9350, 9350, 9750, 9750, 9750, 9750, 9750, 10150, 10150, 10150, 10150, 10150, 10575, 10575, 10575, 10575,10575, 11000, 11000, 11000, 11000, 11000, 11450, 11450, 11450, 11450, 11450, 11900, 11900, 11900, 11900, 11900, 12375, 12375, 12375, 12375, 12375, 12850, 12850, 12850, 12850, 12850, 13355, 13355,13355, 13355, 13355, 13860, 13860, 13860, 13860, 13860, 14395, 14395, 14395, 14395, 14395, 14930, 14930, 14930, 14930, 14930, 15495, 15495, 15495,15495, 15495, 16060, 16060, 16060, 16060, 16060, 16655, 16655, 16655, 16655, 16655, 17250, 17250, 17250, 17250, 17250, 17875, 17875, 17875, 17875, 17875, 18500, 18500, 18500, 18500, 18500, 19162, 19162, 19162, 19162, 19162, 19824, 19824, 19824, 19824, 19824, 20523, 20523, 20523, 20523,20523, 21222, 21222, 21222, 21222, 21222, 21958, 21958, 21958, 21958, 21958, 22694, 22694, 22694, 22694, 22694, 23467, 23467, 23467, 23467, 23467, 24240, 24240, 24240, 24240, 24240, 25050, 25050, 25050, 25050, 25050, 25860, 25860, 25860, 25860, 25860, 26714, 26714, 26714, 26714, 26714,27568, 27568, 27568, 27568, 27568, 28466, 28466, 28466, 28466, 28466, 29364, 29364, 29364, 29364, 29364, 30306, 30306, 30306, 30306,30306, 31248, 31248, 31248, 31248, 31248, 32234, 32234, 32234, 32234, 32234, 33220, 33220, 33220, 33220, 33220, 34250, 34250, 34250, 34250, 34250,35280, 35280, 35280, 35280, 35280, 36363, 36363, 36363, 36363, 36363, 37446, 37446, 37446, 37446, 37446, 38582, 38582, 38582, 38582, 38582, 39718, 39718, 39718, 39718, 39718, 40907, 40907, 40907, 40907, 40907, 42096, 42096, 42096, 42096, 42096, 43338, 43338, 43338, 43338, 43338, 44580,44580, 44580, 44580, 44580, 45875, 45875, 45875, 45875, 45875, 47170, 47170, 47170, 47170, 47170, 48527, 48527, 48527, 48527, 48527, 49884, 49884, 49884, 49884, 49884, 51303, 51303, 51303, 51303, 51303, 52722, 52722, 52722, 52722, 52722, 54203, 54203, 54203, 54203, 54203, 55684, 55684,55684, 55684, 55684, 57227, 57227, 57227, 57227, 57227, 58770, 58770, 58770, 58770, 58770, 60375, 60375, 60375, 60375, 60375, 61980,61980, 61980, 61980, 61980, 63658, 63658, 63658, 63658, 63658, 65336, 65336, 65336, 65336, 65336, 67087, 67087, 67087, 67087, 67087, 68838, 68838,68838, 68838, 68838, 70662, 70662, 70662, 70662, 70662, 72486, 72486, 72486, 72486, 72486, 74383, 74383, 74383, 74383, 74383, 76280, 76280, 76280, 76280, 76280, 78250, 78250, 78250, 78250, 78250, 80220, 80220, 80220, 80220, 80220, 82274, 82274, 82274, 82274, 82274, 84328, 84328, 84328,84328, 84328, 86466, 86466, 86466, 86466, 86466, 88604, 88604, 88604, 88604, 88604, 90826, 90826, 90826, 90826, 90826, 93048, 93048, 93048, 93048, 93048, 95354, 95354, 95354, 95354, 95354, 97660, 97660, 97660, 97660, 97660, 100050, 100050, 100050, 100050, 100050, 102440, 102440, 102440,102440, 102440, 104927, 104927, 104927, 104927, 104927, 107414, 107414, 107414, 107414, 107414, 109998, 109998, 109998, 109998, 109998, 112582,112582, 112582, 112582, 112582, 115263, 115263, 115263, 115263, 115263, 117944, 117944, 117944, 117944, 117944, 120722, 120722, 120722, 120722,120722, 123500, 123500, 123500, 123500, 123500, 126375, 126375, 126375, 126375, 126375,129250, 129250, 129250, 129250, 129250, 132235, 132235, 132235, 132235, 132235, 135220, 135220, 135220, 135220, 135220, 138315, 138315, 138315,138315, 138315, 141410, 141410, 141410, 141410, 141410, 144615, 144615, 144615, 144615, 144615, 147820, 147820, 147820, 147820, 147820, 151135,151135, 151135, 151135, 151135, 154450, 154450, 154450, 154450, 154450, 157875, 157875, 157875, 157875, 157875, 161300, 161300, 161300, 161300,161300, 164850, 164850, 164850, 164850, 164850, 168400,168400, 168400, 168400, 168400, 172075, 172075, 172075, 172075, 172075, 175750, 175750, 175750, 175750, 175750, 179550, 179550, 179550, 179550,179550, 183350, 183350, 183350, 183350, 183350, 187275, 187275, 187275, 187275, 187275, 191200, 191200, 191200, 191200, 191200, 195250, 195250,195250, 195250, 195250, 199300, 199300, 199300, 199300, 199300, 203490, 203490, 203490, 203490, 203490, 207680, 207680, 207680, 207680, 207680,212010, 212010, 212010, 212010, 212010, 216340, 216340,216340, 216340, 216340, 220810, 220810, 220810, 220810, 220810, 225280, 225280, 225280, 225280, 225280, 229890, 229890, 229890, 229890, 229890,234500, 234500, 234500, 234500, 234500, 239250, 239250, 239250, 239250, 239250, 244000, 244000, 244000, 244000, 244000, 248908, 248908, 248908,248908, 248908, 253816, 253816, 253816, 253816, 253816, 258882, 258882, 258882, 258882, 258882, 263948, 263948, 263948, 263948, 263948, 269172,269172, 269172, 269172, 269172, 274396, 274396, 274396,274396, 274396, 279778, 279778, 279778, 279778, 279778, 285160, 285160, 285160, 285160, 285160, 290700, 290700, 290700, 290700, 290700, 296240,296240, 296240, 296240, 296240, 301956, 301956, 301956, 301956, 301956, 307672, 307672, 307672, 307672, 307672, 313564, 313564, 313564, 313564,313564, 319456, 319456, 319456, 319456, 319456, 325524, 325524, 325524, 325524, 325524, 331592, 331592, 331592, 331592, 331592, 337836, 337836,337836, 337836, 337836, 344080, 344080, 344080, 344080,344080, 350500, 350500, 350500, 350500, 350500, 356920, 356920, 356920, 356920, 356920, 363537, 363537, 363537, 363537, 363537, 370154, 370154,370154, 370154, 370154, 376968, 376968, 376968, 376968, 376968, 383782, 383782, 383782, 383782, 383782, 390793, 390793, 390793, 390793, 390793,397804, 397804, 397804, 397804, 397804, 405012, 405012, 405012, 405012, 405012, 412220, 412220, 412220, 412220, 412220, 419625, 419625, 419625,419625, 419625, 427030, 427030, 427030, 427030, 427030,434653, 434653, 434653, 434653, 434653, 442276, 442276, 442276, 442276, 442276, 450117, 450117, 450117, 450117, 450117, 457958, 457958, 457958,457958, 457958, 466017, 466017, 466017, 466017, 466017, 474076, 474076, 474076, 474076, 474076, 482353, 482353, 482353, 482353, 482353, 490630,490630, 490630, 490630, 490630, 499125, 499125, 499125, 499125, 499125, 507620, 507620, 507620, 507620, 507620, 516357, 516357, 516357, 516357,516357, 525094, 525094, 525094, 525094, 525094, 534073,534073, 534073, 534073, 534073, 543052, 543052, 543052, 543052, 543052, 552273, 552273, 552273, 552273, 552273, 561494, 561494, 561494, 561494,561494, 570957, 570957, 570957, 570957, 570957, 580420, 580420, 580420, 580420, 580420, 590125, 590125, 590125, 590125, 590125, 599830, 599830,599830, 599830, 599830, 609801, 609801, 609801, 609801, 609801, 619772, 619772, 619772, 619772, 619772, 630009, 630009, 630009, 630009, 630009,640246, 640246, 640246, 640246, 640246, 650749, 650749,650749, 650749, 650749, 661252, 661252, 661252, 661252, 661252, 672021, 672021, 672021, 672021, 672021, 682790, 682790, 682790, 682790, 682790,693825, 693825, 693825, 693825, 693825, 704860, 704860, 704860, 704860, 704860, 716188, 716188, 716188, 716188, 716188, 727516, 727516, 727516,727516, 727516, 739137, 739137, 739137, 739137, 739137, 750758, 750758, 750758, 750758, 750758, 762672, 762672, 762672, 762672, 762672, 774586,774586, 774586, 774586, 774586, 786793, 786793, 786793,786793, 786793, 799000, 799000, 799000, 799000, 799000, 811500, 811500, 811500, 811500, 811500, 824000, 824000, 824000, 824000, 824000, 836820,836820, 836820, 836820, 836820, 849640, 849640, 849640, 849640, 849640, 862780, 862780, 862780, 862780, 862780, 875920, 875920, 875920, 875920,875920, 889380, 889380, 889380, 889380, 889380, 902840, 902840, 902840, 902840, 902840, 916620, 916620, 916620, 916620, 916620, 930400, 930400,930400, 930400, 930400, 944500, 944500, 944500, 944500,944500, 958600, 958600, 958600, 958600, 958600, 973050, 973050, 973050, 973050, 973050, 987500, 987500, 987500, 987500, 987500, 1002300, 1002300,1002300, 1002300, 1002300, 1017100, 1017100, 1017100, 1017100, 1017100, 1032250, 1032250, 1032250, 1032250, 1032250, 1047400, 1047400, 1047400,1047400, 1047400, 1062900, 1062900, 1062900, 1062900, 1062900, 1078400, 1078400, 1078400, 1078400, 1078400, 1094250, 1094250, 1094250, 1094250,1094250, 1110100, 1110100, 1110100, 1110100, 1110100,1126330, 1126330, 1126330, 1126330, 1126330, 1142560, 1142560, 1142560, 1142560, 1142560, 1159170, 1159170, 1159170, 1159170, 1159170, 1175780,1175780, 1175780, 1175780, 1175780, 1192770, 1192770, 1192770, 1192770, 1192770, 1209760, 1209760, 1209760, 1209760, 1209760, 1227130, 1227130,1227130, 1227130, 1227130, 1244500, 1244500, 1244500, 1244500, 1244500, 1262250, 1262250, 1262250, 1262250, 1262250, 1280000, 1280000, 1280000,1280000, 1280000, 1298164, 1298164, 1298164, 1298164, 1298164, 1316328, 1316328, 1316328, 1316328, 1316328, 1334906, 1334906, 1334906, 1334906,1334906, 1353484, 1353484, 1353484, 1353484, 1353484, 1372476, 1372476, 1372476, 1372476, 1372476, 1391468, 1391468, 1391468, 1391468, 1391468,1410874, 1410874, 1410874, 1410874, 1410874, 1430280, 1430280, 1430280, 1430280, 1430280, 1450100, 1450100, 1450100, 1450100, 1450100, 1469920,1469920, 1469920, 1469920, 1469920, 1490188, 1490188, 1490188, 1490188, 1490188, 1510456, 1510456, 1510456, 1510456, 1510456, 1531172, 1531172,1531172, 1531172, 1531172, 1551888, 1551888, 1551888, 1551888, 1551888, 1573052, 1573052,1573052, 1573052, 1573052, 1594216, 1594216, 1594216, 1594216, 1594216, 1615828, 1615828, 1615828, 1615828, 1615828, 1637440, 1637440, 1637440,1637440, 1637440, 1659500, 1659500, 1659500, 1659500, 1659500, 1681560, 1681560, 1681560, 1681560, 1681560, 1704106, 1704106, 1704106, 1704106,1704106, 1726652, 1726652, 1726652, 1726652, 1726652, 1749684, 1749684, 1749684, 1749684, 1749684, 1772716, 1772716, 1772716, 1772716, 1772716,1796234, 1796234, 1796234, 1796234, 1796234, 1819752, 1819752, 1819752, 1819752, 1819752, 1843756, 1843756, 1843756, 1843756, 1843756, 1867760,1867760, 1867760, 1867760, 1867760, 1892250, 1892250, 1892250, 1892250, 1892250, 1916740, 1916740, 1916740, 1916740, 1916740, 1941754, 1941754,1941754, 1941754, 1941754, 1966768, 1966768, 1966768, 1966768, 1966768, 1992306, 1992306, 1992306, 1992306, 1992306, 2017844, 2017844, 2017844,2017844, 2017844, 2043906, 2043906, 2043906, 2043906, 2043906, 2069968, 2069968, 2069968, 2069968, 2069968, 2096554, 2096554, 2096554, 2096554,2096554, 2123140, 2123140, 2123140, 2123140, 2123140, 2150250, 2150250, 2150250, 2150250,2150250, 2177360, 2177360, 2177360, 2177360, 2177360, 2205036, 2205036, 2205036, 2205036, 2205036, 2232712, 2232712, 2232712, 2232712, 2232712,2260954, 2260954, 2260954, 2260954, 2260954, 2289196, 2289196, 2289196, 2289196, 2289196, 2318004, 2318004, 2318004, 2318004, 2318004, 2346812,2346812, 2346812, 2346812, 2346812, 2376186, 2376186, 2376186, 2376186, 2376186, 2405560, 2405560, 2405560, 2405560, 2405560, 2435500, 2435500,2435500, 2435500, 2435500, 2465440, 2465440, 2465440, 2465440, 2465440, 2495988, 2495988, 2495988, 2495988, 2495988, 2526536, 2526536, 2526536,2526536, 2526536, 2557692, 2557692, 2557692, 2557692, 2557692, 2588848, 2588848, 2588848, 2588848, 2588848, 2620612, 2620612, 2620612, 2620612,2620612, 2652376, 2652376, 2652376, 2652376, 2652376, 2684748, 2684748, 2684748, 2684748, 2684748, 2717120, 2717120, 2717120, 2717120, 2717120,2750100, 2750100, 2750100, 2750100, 2750100, 2783080, 2783080, 2783080, 2783080, 2783080, 2816714, 2816714, 2816714, 2816714, 2816714, 2850348,2850348, 2850348, 2850348, 2850348, 2884636, 2884636, 2884636, 2884636, 2884636, 2918924,2918924, 2918924, 2918924, 2918924, 2953866, 2953866, 2953866, 2953866, 2953866, 2988808, 2988808, 2988808, 2988808, 2988808, 3024404, 3024404,3024404, 3024404, 3024404, 3060000, 3060000, 3060000, 3060000, 3060000, 3096250, 3096250, 3096250, 3096250, 3096250, 3132500, 3132500, 3132500,3132500, 3132500, 3169450, 3169450, 3169450, 3169450, 3169450, 3206400, 3206400, 3206400, 3206400, 3206400, 3244050, 3244050, 3244050, 3244050,3244050, 3281700, 3281700, 3281700, 3281700, 3281700, 3320050, 3320050, 3320050, 3320050, 3320050, 3358400, 3358400, 3358400, 3358400, 3358400,3397450, 3397450, 3397450, 3397450, 3397450, 3436500, 3436500, 3436500, 3436500, 3436500, 3476250, 3476250, 3476250, 3476250, 3476250, 3516000,3516000, 3516000, 3516000, 3516000, 3556500, 3556500, 3556500, 3556500, 3556500, 3597000, 3597000, 3597000, 3597000, 3597000, 3638250, 3638250,3638250, 3638250, 3638250, 3679500, 3679500, 3679500, 3679500, 3679500, 3721500, 3721500, 3721500, 3721500, 3721500, 3763500, 3763500, 3763500,3763500, 3763500, 3806250, 3806250, 3806250, 3806250, 3806250, 3849000, 3849000, 3849000,3849000, 3849000, 3892500, 3892500, 3892500, 3892500, 3892500, 3936000, 3936000, 3936000, 3936000, 3936000, 3980300, 3980300, 3980300, 3980300,3980300, 4024600, 4024600, 4024600, 4024600, 4024600, 4069700, 4069700, 4069700, 4069700, 4069700, 4114800, 4114800, 4114800, 4114800, 4114800,4160700, 4160700, 4160700, 4160700, 4160700, 4206600, 4206600, 4206600, 4206600, 4206600, 4253300, 4253300, 4253300, 4253300, 4253300, 4300000,4300000, 4300000, 4300000, 4300000, 4347500, 4347500, 4347500, 4347500, 4347500, 4395000, 4395000, 4395000, 4395000, 4395000, 4443355, 4443355,4443355, 4443355, 4443355, 4491710, 4491710, 4491710, 4491710, 4491710, 4540920, 4540920, 4540920, 4540920, 4540920, 4590130, 4590130, 4590130,4590130, 4590130, 4640195, 4640195, 4640195, 4640195, 4640195, 4690260, 4690260, 4690260, 4690260, 4690260, 4741180, 4741180, 4741180, 4741180,4741180, 4792100, 4792100, 4792100, 4792100, 4792100, 4843875, 4843875, 4843875, 4843875, 4843875, 4895650, 4895650, 4895650, 4895650, 4895650,4948335, 4948335, 4948335, 4948335, 4948335, 5001020, 5001020, 5001020, 5001020, 5001020,5054615, 5054615, 5054615, 5054615, 5054615, 5108210, 5108210, 5108210, 5108210, 5108210, 5162715, 5162715, 5162715, 5162715, 5162715, 5217220,5217220, 5217220, 5217220, 5217220, 5272635, 5272635, 5272635, 5272635, 5272635, 5328050, 5328050, 5328050, 5328050, 5328050, 5384375, 5384375,5384375, 5384375, 5384375, 5440700, 5440700, 5440700, 5440700, 5440700, 5497995, 5497995, 5497995, 5497995, 5497995, 5555290, 5555290, 5555290,5555290, 5555290, 5613555, 5613555, 5613555, 5613555, 5613555, 5671820, 5671820, 5671820, 5671820, 5671820, 5731055, 5731055, 5731055, 5731055,5731055, 5790290, 5790290, 5790290, 5790290, 5790290, 5850495, 5850495, 5850495, 5850495, 5850495, 5910700, 5910700, 5910700, 5910700, 5910700,5971875, 5971875, 5971875, 5971875, 5971875, 6033050, 6033050, 6033050, 6033050, 6033050, 6095255, 6095255, 6095255, 6095255, 6095255, 6157460,6157460, 6157460, 6157460, 6157460, 6220695, 6220695, 6220695, 6220695, 6220695, 6283930, 6283930, 6283930, 6283930, 6283930, 6348195, 6348195,6348195, 6348195, 6348195, 6412460, 6412460, 6412460, 6412460, 6412460, 6477755, 6477755,6477755, 6477755, 6477755, 6543050, 6543050, 6543050, 6543050, 6543050, 6609375, 6609375, 6609375, 6609375, 6609375, 6675700, 6675700, 6675700,6675700, 6675700, 6743120, 6743120, 6743120, 6743120, 6743120, 6810540, 6810540, 6810540, 6810540, 6810540, 6879055, 6879055, 6879055, 6879055,6879055, 6947570, 6947570, 6947570, 6947570, 6947570, 7017180, 7017180, 7017180, 7017180, 7017180, 7086790, 7086790, 7086790, 7086790, 7086790,7157495, 7157495, 7157495, 7157495, 7157495, 7228200, 7228200, 7228200, 7228200, 7228200, 7300000, 7300000, 7300000, 7300000, 7300000, 7371800,7371800, 7371800, 7371800, 7371800, 7444760, 7444760, 7444760, 7444760, 7444760, 7517720, 7517720, 7517720, 7517720, 7517720, 7591840, 7591840,7591840, 7591840, 7591840, 7665960, 7665960, 7665960, 7665960, 7665960, 7741240, 7741240, 7741240, 7741240, 7741240, 7816520, 7816520, 7816520,7816520, 7816520, 7892960, 7892960, 7892960, 7892960, 7892960, 7969400, 7969400, 7969400, 7969400, 7969400, 8047000, 8047000, 8047000, 8047000,8047000, 8124600, 8124600, 8124600, 8124600, 8124600, 8203430, 8203430, 8203430, 8203430,8203430, 8282260, 8282260, 8282260, 8282260, 8282260, 8362320, 8362320, 8362320, 8362320, 8362320, 8442380, 8442380, 8442380, 8442380, 8442380,8523670, 8523670, 8523670, 8523670, 8523670, 8604960, 8604960, 8604960, 8604960, 8604960, 8687480, 8687480, 8687480, 8687480, 8687480, 8770000,8770000, 8770000, 8770000, 8770000, 8853750, 8853750, 8853750, 8853750, 8853750, 8937500, 8937500, 8937500, 8937500, 8937500, 9022550, 9022550,9022550, 9022550, 9022550, 9107600, 9107600, 9107600, 9107600, 9107600, 9193950, 9193950, 9193950, 9193950, 9193950, 9280300, 9280300, 9280300,9280300, 9280300, 9367950, 9367950, 9367950, 9367950, 9367950, 9455600, 9455600, 9455600, 9455600, 9455600, 9544550, 9544550, 9544550, 9544550,9544550, 9633500, 9633500, 9633500, 9633500, 9633500, 9723750, 9723750, 9723750, 9723750, 9723750, 9814000, 9814000, 9814000, 9814000, 9814000,9905625, 9905625, 9905625, 9905625, 9905625, 9997250, 9997250, 9997250, 9997250, 9997250, 10090250, 10090250, 10090250, 10090250, 10090250,10183250, 10183250, 10183250, 10183250, 10183250, 10277625, 10277625, 10277625, 10277625, 10277625, 10372000, 10372000, 10372000, 10372000,10372000, 10467750, 10467750, 10467750, 10467750, 10467750, 10563500, 10563500, 10563500, 10563500, 10563500, 10660625, 10660625, 10660625,10660625, 10660625, 10757750, 10757750, 10757750, 10757750, 10757750, 10856325, 10856325, 10856325, 10856325, 10856325, 10954900, 10954900,10954900, 10954900, 10954900, 11054925,11054925, 11054925, 11054925, 11054925, 11154950, 11154950, 11154950, 11154950, 11154950, 11256425, 11256425, 11256425, 11256425, 11256425, 11357900,11357900, 11357900, 11357900, 11357900, 11460825, 11460825, 11460825, 11460825, 11460825, 11563750, 11563750, 11563750, 11563750, 11563750,11668125, 11668125, 11668125, 11668125, 11668125, 11772500, 11772500, 11772500, 11772500, 11772500, 11878406, 11878406, 11878406, 11878406,11878406, 11984312, 11984312, 11984312, 11984312, 11984312, 12091749, 12091749, 12091749, 12091749, 12091749, 12199186, 12199186, 12199186,12199186, 12199186, 12308154, 12308154,12308154, 12308154, 12308154, 12417122, 12417122, 12417122, 12417122, 12417122, 12527621, 12527621, 12527621, 12527621, 12527621, 12638120, 12638120,12638120, 12638120, 12638120, 12750150, 12750150, 12750150, 12750150, 12750150, 12862180, 12862180, 12862180, 12862180, 12862180, 12975822,12975822, 12975822, 12975822, 12975822, 13089464, 13089464, 13089464, 13089464, 13089464, 13204718, 13204718, 13204718, 13204718, 13204718,13319972, 13319972, 13319972, 13319972, 13319972, 13436838, 13436838, 13436838, 13436838, 13436838, 13553704, 13553704, 13553704, 13553704,13553704, 13672182, 13672182, 13672182,13672182, 13672182, 13790660, 13790660, 13790660, 13790660, 13790660, 13910750, 13910750, 13910750, 13910750, 13910750, 14030840, 14030840, 14030840,14030840, 14030840, 14152629, 14152629, 14152629, 14152629, 14152629, 14274418, 14274418, 14274418, 14274418, 14274418, 14397906, 14397906,14397906, 14397906, 14397906, 14521394, 14521394, 14521394, 14521394, 14521394, 14646581, 14646581, 14646581, 14646581, 14646581, 14771768,14771768, 14771768, 14771768, 14771768, 14898654, 14898654, 14898654, 14898654, 14898654, 15025540, 15025540, 15025540, 15025540, 15025540,15154125, 15154125, 15154125, 15154125,15154125, 15282710, 15282710, 15282710, 15282710, 15282710, 15413081, 15413081, 15413081, 15413081, 15413081, 15543452, 15543452, 15543452, 15543452,15543452, 15675609, 15675609, 15675609, 15675609, 15675609, 15807766, 15807766, 15807766, 15807766, 15807766, 15941709, 15941709, 15941709,15941709, 15941709, 16075652, 16075652, 16075652, 16075652, 16075652, 16211381, 16211381, 16211381, 16211381, 16211381, 16347110, 16347110,16347110, 16347110, 16347110, 16484625, 16484625, 16484625, 16484625, 16484625, 16622140, 16622140, 16622140, 16622140, 16622140, 16761534,16761534, 16761534, 16761534, 16761534,16900928, 16900928, 16900928, 16900928, 16900928, 17042201, 17042201, 17042201, 17042201, 17042201, 17183474, 17183474, 17183474, 17183474, 17183474,17326626, 17326626, 17326626, 17326626, 17326626, 17469778, 17469778, 17469778, 17469778, 17469778, 17614809, 17614809, 17614809, 17614809,17614809, 17759840, 17759840, 17759840, 17759840, 17759840, 17906750, 17906750, 17906750, 17906750, 17906750, 18053660, 18053660, 18053660,18053660, 18053660, 18202542, 18202542, 18202542, 18202542, 18202542, 18351424, 18351424, 18351424, 18351424, 18351424, 18502278, 18502278,18502278, 18502278, 18502278, 18653132,18653132, 18653132, 18653132, 18653132, 18805958, 18805958, 18805958, 18805958, 18805958, 18958784, 18958784, 18958784, 18958784, 18958784, 19113582,19113582, 19113582, 19113582, 19113582, 19268380, 19268380, 19268380, 19268380, 19268380, 19425150, 19425150, 19425150, 19425150, 19425150,19581920, 19581920, 19581920, 19581920, 19581920, 19740761, 19740761, 19740761, 19740761, 19740761, 19899602, 19899602, 19899602, 19899602,19899602, 20060514, 20060514, 20060514, 20060514, 20060514, 20221426, 20221426, 20221426, 20221426, 20221426, 20384409, 20384409, 20384409,20384409, 20384409, 20547392, 20547392,20547392, 20547392, 20547392, 20712446, 20712446, 20712446, 20712446, 20712446, 20877500, 20877500, 20877500, 20877500, 20877500, 21044625, 21044625,21044625, 21044625, 21044625, 21211750, 21211750, 21211750, 21211750, 21211750, 21381045, 21381045, 21381045, 21381045, 21381045, 21550340,21550340, 21550340, 21550340, 21550340, 21721805, 21721805, 21721805, 21721805, 21721805, 21893270, 21893270, 21893270, 21893270, 21893270,22066905, 22066905, 22066905, 22066905, 22066905, 22240540, 22240540, 22240540, 22240540, 22240540, 22416345, 22416345, 22416345, 22416345,22416345, 22592150, 22592150, 22592150,22592150, 22592150, 22770125, 22770125, 22770125, 22770125, 22770125, 22948100, 22948100, 22948100, 22948100, 22948100, 23128350, 23128350, 23128350,23128350, 23128350, 23308600, 23308600, 23308600, 23308600, 23308600, 23491125, 23491125, 23491125, 23491125, 23491125, 23673650, 23673650,23673650, 23673650, 23673650, 23858450, 23858450, 23858450, 23858450, 23858450, 24043250, 24043250, 24043250, 24043250, 24043250, 24230325,24230325, 24230325, 24230325, 24230325, 24417400, 24417400, 24417400, 24417400, 24417400, 24606750, 24606750, 24606750, 24606750, 24606750,24796100, 24796100, 24796100, 24796100,24796100, 24987830, 24987830, 24987830, 24987830, 24987830, 25179560, 25179560, 25179560, 25179560, 25179560, 25373670, 25373670, 25373670, 25373670,25373670, 25567780, 25567780, 25567780, 25567780, 25567780, 25764270, 25764270, 25764270, 25764270, 25764270, 25960760, 25960760, 25960760,25960760, 25960760, 26159630, 26159630, 26159630, 26159630, 26159630, 26358500, 26358500, 26358500, 26358500, 26358500, 26559750, 26559750,26559750, 26559750, 26559750, 26761000, 26761000, 26761000, 26761000, 26761000]LI={r:Lagrange_Interpolation(Y=[dp[i] for i in range(r,3000,500)],x0=r,xd=500,mod=mod) for r in range(500)}T=int(readline())for _ in range(T):M=int(readline())r=M%500ans=LI[r][M]print(ans)