結果

問題 No.1653 Squarefree
ユーザー sgswsgsw
提出日時 2021-08-27 15:35:03
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 4,373 bytes
コンパイル時間 2,282 ms
コンパイル使用メモリ 203,368 KB
最終ジャッジ日時 2025-01-24 02:16:35
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 12 TLE * 26
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
using namespace std;
#pragma GCC optimize("Ofast")
#define ll long long
#define ld long double
#define rep(i, a, b) for (int i = a; i < b; i++)
#define rep1(i, a, b) for (int i = (b) - 1; i >= a; i--)
#define endl '\n'
#define vvii vector<vector<int>>
#define vi vector<int>
#define vvll vector<vector<ll>>
#define vl vector<ll>
template<class T> ostream& operator << (ostream &s, vector<T> &P)
{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << " "; } s << P[i]; } return s; }
template <class T>bool chmax(T &a, T b){if (a < b){a = b;return true;}return false;}
template <class T>bool chmin(T &a, T b){if (a > b){a = b;return true;}return false;}
template <class T = int>T gcd(T a, T b){return (b == 0) ? a : gcd(b, a % b);}
template <class T = int>T lcm(T a, T b){return a / gcd(a, b) * b;}
template<class T = int>T powMod(T x, T k, T m) {if (k == 0){return (T)1;}if (k % 2 == 0) {return powMod(x*x % m, k/2, m);}else{return x*powMod(x, k-1
    , m) % m;}}
template <class T = int>T extgcd(T a,T b,T &x,T &y){T g = a;x = 1;y = 0;if (b != 0) {g = extgcd(b, a % b, y, x), y -= (a / b) * x;}return g;}
template<class T = int> T invMod(T a,T m){T x,y;if (extgcd(a, m, x, y) == 1) {return (x + m) % m;}else{return -1;}}
using Pii = pair<int,int>;
using Pll = pair<ll,ll>;
struct Eratos
{
vector<int> primes;
vector<bool> isprime;
vector<int> mebius;
vector<int> min_factor;
Eratos(int MAX) : primes(),
isprime(MAX + 1, true),
mebius(MAX + 1, 1),
min_factor(MAX + 1, -1)
{
isprime[0] = isprime[1] = false;
min_factor[0] = 0, min_factor[1] = 1;
for (int i = 2; i <= MAX; ++i)
{
if (!isprime[i])
continue;
primes.push_back(i);
mebius[i] = -1;
min_factor[i] = i;
for (int j = i * 2; j <= MAX; j += i)
{
isprime[j] = false;
if ((j / i) % i == 0)
mebius[j] = 0;
else
mebius[j] = -mebius[j];
if (min_factor[j] == -1)
min_factor[j] = i;
}
}
}
// prime factorization
vector<pair<int, int>> prime_factors(int n)
{
vector<pair<int, int>> res;
while (n != 1)
{
int prime = min_factor[n];
int exp = 0;
while (min_factor[n] == prime)
{
++exp;
n /= prime;
}
res.push_back(make_pair(prime, exp));
}
return res;
}
// enumerate divisors
vector<int> divisors(int n)
{
vector<int> res({1});
auto pf = prime_factors(n);
for (auto p : pf)
{
int n = (int)res.size();
for (int i = 0; i < n; ++i)
{
int v = 1;
for (int j = 0; j < p.second; ++j)
{
v *= p.first;
res.push_back(res[i] * v);
}
}
}
return res;
}
};
const int maxn = 1e6 + 10;
Eratos Primes(maxn);
bool is_square(ll x){
ll l = 1; //l * l <= x
ll r = 1e9 + 5; // l * l > x
while (r - l > 1){
ll med = (r + l) / 2;
if (med * med <= x){
l = med;
}else{
r = med;
}
}
if (l * l == x){
return true;
}else{
return false;
}
}
signed main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
ll L,R;
cin >> L >> R;
vector<ll> valid(R - L + 1);
vector<bool> ok(R - L + 1);
for (ll i = 0; i <= R - L;i++){
valid[i] = i + L;
ok[i] = true;
}
for (int p : Primes.primes){
ll q = p;
for (ll d = (L + q - 1) / q * q; d <= R;d++){
int ord = 0;
while(valid[d - L] % q == 0){
valid[d - L] /= q;
ord++;
}
if (ord >= 2){
ok[d - L] = false;
}
}
}
int ans = 0;
for (ll i = 0; i <= R - L;i++){
if (!ok[i]){
continue;
}
ans++;
ll x = valid[i];
if (is_square(x) && x > 1){
ans--;
}
}
cout << ans << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0