結果
問題 | No.1653 Squarefree |
ユーザー |
![]() |
提出日時 | 2021-08-27 15:35:03 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 4,373 bytes |
コンパイル時間 | 2,282 ms |
コンパイル使用メモリ | 203,368 KB |
最終ジャッジ日時 | 2025-01-24 02:16:35 |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 12 TLE * 26 |
ソースコード
#include<bits/stdc++.h>using namespace std;#pragma GCC optimize("Ofast")#define ll long long#define ld long double#define rep(i, a, b) for (int i = a; i < b; i++)#define rep1(i, a, b) for (int i = (b) - 1; i >= a; i--)#define endl '\n'#define vvii vector<vector<int>>#define vi vector<int>#define vvll vector<vector<ll>>#define vl vector<ll>template<class T> ostream& operator << (ostream &s, vector<T> &P){ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << " "; } s << P[i]; } return s; }template <class T>bool chmax(T &a, T b){if (a < b){a = b;return true;}return false;}template <class T>bool chmin(T &a, T b){if (a > b){a = b;return true;}return false;}template <class T = int>T gcd(T a, T b){return (b == 0) ? a : gcd(b, a % b);}template <class T = int>T lcm(T a, T b){return a / gcd(a, b) * b;}template<class T = int>T powMod(T x, T k, T m) {if (k == 0){return (T)1;}if (k % 2 == 0) {return powMod(x*x % m, k/2, m);}else{return x*powMod(x, k-1, m) % m;}}template <class T = int>T extgcd(T a,T b,T &x,T &y){T g = a;x = 1;y = 0;if (b != 0) {g = extgcd(b, a % b, y, x), y -= (a / b) * x;}return g;}template<class T = int> T invMod(T a,T m){T x,y;if (extgcd(a, m, x, y) == 1) {return (x + m) % m;}else{return -1;}}using Pii = pair<int,int>;using Pll = pair<ll,ll>;struct Eratos{vector<int> primes;vector<bool> isprime;vector<int> mebius;vector<int> min_factor;Eratos(int MAX) : primes(),isprime(MAX + 1, true),mebius(MAX + 1, 1),min_factor(MAX + 1, -1){isprime[0] = isprime[1] = false;min_factor[0] = 0, min_factor[1] = 1;for (int i = 2; i <= MAX; ++i){if (!isprime[i])continue;primes.push_back(i);mebius[i] = -1;min_factor[i] = i;for (int j = i * 2; j <= MAX; j += i){isprime[j] = false;if ((j / i) % i == 0)mebius[j] = 0;elsemebius[j] = -mebius[j];if (min_factor[j] == -1)min_factor[j] = i;}}}// prime factorizationvector<pair<int, int>> prime_factors(int n){vector<pair<int, int>> res;while (n != 1){int prime = min_factor[n];int exp = 0;while (min_factor[n] == prime){++exp;n /= prime;}res.push_back(make_pair(prime, exp));}return res;}// enumerate divisorsvector<int> divisors(int n){vector<int> res({1});auto pf = prime_factors(n);for (auto p : pf){int n = (int)res.size();for (int i = 0; i < n; ++i){int v = 1;for (int j = 0; j < p.second; ++j){v *= p.first;res.push_back(res[i] * v);}}}return res;}};const int maxn = 1e6 + 10;Eratos Primes(maxn);bool is_square(ll x){ll l = 1; //l * l <= xll r = 1e9 + 5; // l * l > xwhile (r - l > 1){ll med = (r + l) / 2;if (med * med <= x){l = med;}else{r = med;}}if (l * l == x){return true;}else{return false;}}signed main(){ios::sync_with_stdio(false);cin.tie(nullptr);ll L,R;cin >> L >> R;vector<ll> valid(R - L + 1);vector<bool> ok(R - L + 1);for (ll i = 0; i <= R - L;i++){valid[i] = i + L;ok[i] = true;}for (int p : Primes.primes){ll q = p;for (ll d = (L + q - 1) / q * q; d <= R;d++){int ord = 0;while(valid[d - L] % q == 0){valid[d - L] /= q;ord++;}if (ord >= 2){ok[d - L] = false;}}}int ans = 0;for (ll i = 0; i <= R - L;i++){if (!ok[i]){continue;}ans++;ll x = valid[i];if (is_square(x) && x > 1){ans--;}}cout << ans << endl;return 0;}