結果
問題 | No.1653 Squarefree |
ユーザー | tatyam |
提出日時 | 2021-08-27 16:54:23 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 1,912 bytes |
コンパイル時間 | 2,854 ms |
コンパイル使用メモリ | 247,268 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-11-20 17:54:19 |
合計ジャッジ時間 | 4,741 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 15 ms
6,820 KB |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | AC | 14 ms
6,816 KB |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | AC | 15 ms
6,816 KB |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | WA | - |
ソースコード
#include <bits/stdc++.h> using namespace std; using u64 = uint64_t; constexpr int rt = 2e6, rt2 = (u64)1e18 / rt / rt, width = 1e6 + 1; bool isprime[rt + 1], ans_[width]; void sieve_of_atkin(){ constexpr int N = 2e6, sqrtN = 1414; int n; for(int z = 1; z <= 5; z += 4){ for(int y = z; y <= sqrtN; y += 6){ for(int x = 1; x <= sqrtN && (n = 4*x*x+y*y) <= N; ++x) isprime[n] = !isprime[n]; for(int x = y+1; x <= sqrtN && (n = 3*x*x-y*y) <= N; x += 2) isprime[n] = !isprime[n]; } } for(int z = 2; z <= 4; z += 2){ for(int y = z; y <= sqrtN; y += 6){ for(int x = 1; x <= sqrtN && (n = 3*x*x+y*y) <= N; x += 2) isprime[n] = !isprime[n]; for(int x = y+1; x <= sqrtN && (n = 3*x*x-y*y) <= N; x += 2) isprime[n] = !isprime[n]; } } for(int y = 3; y <= sqrtN; y += 6){ for(int z = 1; z <= 2; ++z){ for(int x = z; x <= sqrtN && (n = 4*x*x+y*y) <= N; x += 3) isprime[n] = !isprime[n]; } } for(int n = 5; n <= sqrtN; ++n) if(isprime[n]) for(int k = n*n; k <= N; k+=n*n) isprime[k] = false; isprime[2] = isprime[3] = true; } u64 ceilk(u64 n, u64 k){ const u64 r = n % k; return r ? n + k - r : n; } int main(){ cin.tie(nullptr); ios::sync_with_stdio(false); sieve_of_atkin(); u64 L = 1e18 - 1e6, R = 1e18; cin >> L >> R; auto ans = ans_ - L; for(int i = 2; i <= rt; i++) if(isprime[i]){ const u64 p = u64(i) * i; for(u64 i = ceilk(L, p); i <= R; i += p) ans[i] = true; } for(int k = 1; k <= rt2; k++){ int i = sqrt(R / k); if(u64(k) * (i + 1) * (i + 1) <= R) i++; if(u64(k) * i * i >= L) ans[u64(k) * i * i] = true; } cout << count(ans_, ans_ + width, false) << endl; }