結果
| 問題 |
No.665 Bernoulli Bernoulli
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2021-08-27 17:11:35 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 4,535 bytes |
| コンパイル時間 | 258 ms |
| コンパイル使用メモリ | 13,184 KB |
| 実行使用メモリ | 24,704 KB |
| 最終ジャッジ日時 | 2024-11-20 18:24:27 |
| 合計ジャッジ時間 | 52,186 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 TLE * 2 |
| other | TLE * 15 |
ソースコード
import bisect
import copy
import decimal
import fractions
import functools
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
if heap and item < heap[0]:
item, heap[0] = heap[0], item
heapq._siftup_max(heap, 0)
return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
def Comb(N,K,mod=0):
if K<0 or K>N:
return 0
K=min(K,N-K)
s=1
if mod:
for i in range(N,N-K,-1):
s*=i
s%=mod
ss=1
for i in range(1,K+1):
ss*=i
ss%=mod
s*=MOD(mod).Pow(ss,-1)
s%=mod
else:
for i in range(N-K+1,N+1):
s*=i
for i in range(1,K+1):
s//=i
return s
def Bernoulli_Numbers(N,mod=0):
bernoulli_numbers=[0]*(N+1) if mod else [fractions.Fraction(0)]*(N+1)
bernoulli_numbers[0]+=1
if mod:
MD=MOD(mod)
MD.Build_Fact(N+1)
for i in range(1,N+1):
bernoulli_numbers[i]=-MD.Pow(i+1,-1)*sum(MD.Comb(i+1,j)*bernoulli_numbers[j] for j in range(i))%mod
else:
for i in range(1,N+1):
bernoulli_numbers[i]=-sum(Comb(i+1,j)*bernoulli_numbers[j] for j in range(i))/(i+1)
return bernoulli_numbers
class Faulhaber:
def __init__(self,K,mod=0):
self.K=K
self.mod=mod
if self.mod:
bernoulli_numbers=Bernoulli_Numbers(self.K,self.mod)
MD=MOD(self.mod)
MD.Build_Fact(self.K+1)
inve=MD.Pow(self.K+1,-1)
self.coefficient=[bernoulli_numbers[i]*MD.Comb(self.K+1,i)*inve%mod for i in range(self.K+1)]
for i in range(1,self.K+1,2):
self.coefficient[i]*=-1
self.coefficient[i]%=mod
else:
bernoulli_numbers=Bernoulli_Numbers(self.K)
self.coefficient=[bernoulli_numbers[i]*Comb(self.K+1,i)/(K+1) for i in range(self.K+1)]
for i in range(1,self.K+1,2):
self.coefficient[i]*=-1
def __call__(self,N):
retu=0
N_pow=N
for i in range(self.K+1):
retu+=N_pow*self.coefficient[self.K-i]
N_pow*=N
if self.mod:
retu%=self.mod
N_pow%=self.mod
return retu
def Extended_Euclid(n,m):
stack=[]
while m:
stack.append((n,m))
n,m=m,n%m
if n>=0:
x,y=1,0
else:
x,y=-1,0
for i in range(len(stack)-1,-1,-1):
n,m=stack[i]
x,y=y,x-(n//m)*y
return x,y
class MOD:
def __init__(self,p,e=1):
self.p=p
self.e=e
self.mod=self.p**self.e
def Pow(self,a,n):
a%=self.mod
if n>=0:
return pow(a,n,self.mod)
else:
assert math.gcd(a,self.mod)==1
x=Extended_Euclid(a,self.mod)[0]
return pow(x,-n,self.mod)
def Build_Fact(self,N):
assert N>=0
self.factorial=[1]
self.cnt=[0]*(N+1)
for i in range(1,N+1):
ii=i
self.cnt[i]=self.cnt[i-1]
while ii%self.p==0:
ii//=self.p
self.cnt[i]+=1
self.factorial.append((self.factorial[-1]*ii)%self.mod)
self.factorial_inve=[None]*(N+1)
self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
for i in range(N-1,-1,-1):
ii=i+1
while ii%self.p==0:
ii//=self.p
self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod
def Fact(self,N):
return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.mod
def Fact_Inve(self,N):
if self.cnt[N]:
return None
return self.factorial_inve[N]
def Comb(self,N,K,divisible_count=False):
if K<0 or K>N:
return 0
retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.mod
cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
if divisible_count:
return retu,cnt
else:
retu*=pow(self.p,cnt,self.mod)
retu%=self.mod
return retu
N,K=map(int,readline().split())
F=Faulhaber(K)
ans=F(N)
print(ans)
vwxyz