結果
問題 | No.1661 Sum is Prime (Hard Version) |
ユーザー | PCTprobability |
提出日時 | 2021-08-27 21:27:23 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 7,030 bytes |
コンパイル時間 | 7,193 ms |
コンパイル使用メモリ | 306,968 KB |
実行使用メモリ | 86,572 KB |
最終ジャッジ日時 | 2024-11-21 00:50:58 |
合計ジャッジ時間 | 10,545 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 124 ms
86,000 KB |
testcase_01 | AC | 126 ms
85,988 KB |
testcase_02 | AC | 147 ms
85,492 KB |
testcase_03 | WA | - |
testcase_04 | AC | 126 ms
86,340 KB |
testcase_05 | AC | 129 ms
85,624 KB |
testcase_06 | AC | 122 ms
85,820 KB |
testcase_07 | AC | 127 ms
86,572 KB |
testcase_08 | AC | 121 ms
85,512 KB |
testcase_09 | AC | 126 ms
85,496 KB |
testcase_10 | AC | 123 ms
85,496 KB |
testcase_11 | AC | 128 ms
85,488 KB |
testcase_12 | AC | 141 ms
85,752 KB |
testcase_13 | AC | 139 ms
85,752 KB |
testcase_14 | AC | 140 ms
85,744 KB |
testcase_15 | AC | 146 ms
85,944 KB |
testcase_16 | AC | 142 ms
86,056 KB |
testcase_17 | AC | 140 ms
85,972 KB |
testcase_18 | AC | 131 ms
85,492 KB |
testcase_19 | AC | 133 ms
86,084 KB |
testcase_20 | AC | 133 ms
85,624 KB |
testcase_21 | AC | 138 ms
85,768 KB |
testcase_22 | AC | 163 ms
85,620 KB |
testcase_23 | AC | 157 ms
85,688 KB |
ソースコード
#pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #pragma GCC optimize("Ofast") #include <bits/stdc++.h> #include <unistd.h> using namespace std; #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #endif using ll = long long; using ld = long double; using ull = unsigned long long; #define endl "\n" typedef pair<int, int> Pii; #define REP3(i, m, n) for (int i = (m); (i) < int(n); ++ (i)) #define FOR(i,a,b) for(ll i=a;i<=(ll)(b);i++) #define rep(i,a,b) for(int i=(int)(a);i<(int)(b);i++) #define ALL(x) begin(x), end(x) #define all(s) (s).begin(),(s).end() //#define rep2(i, m, n) for (int i = (m); i < (n); ++i) //#define rep(i, n) rep2(i, 0, n) #define PB push_back #define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i) #define drep(i, n) drep2(i, n, 0) #define rever(vec) reverse(vec.begin(), vec.end()) #define sor(vec) sort(vec.begin(), vec.end()) //#define FOR(i,a,b) for(ll i=a;i<=(ll)(b);i++) #define fi first #define se second #define pb push_back #define P pair<ll,ll> #define NP next_permutation //const ll mod = 1000000009; //const ll mod = 998244353; const ll mod = 1000000007; const ll inf = 4100000000000000000ll; const ld eps = ld(0.00000000001); //static const long double pi = 3.141592653589793; template<class T>void vcin(vector<T> &n){for(int i=0;i<int(n.size());i++) cin>>n[i];} template<class T,class K>void vcin(vector<T> &n,vector<K> &m){for(int i=0;i<int(n.size());i++) cin>>n[i]>>m[i];} template<class T>void vcout(vector<T> &n){for(int i=0;i<int(n.size());i++){cout<<n[i]<<" ";}cout<<endl;} template<class T>void vcin(vector<vector<T>> &n){for(int i=0;i<int(n.size());i++){for(int j=0;j<int(n[i].size());j++){cin>>n[i][j];}}} template<class T>void vcout(vector<vector<T>> &n){for(int i=0;i<int(n.size());i++){for(int j=0;j<int(n[i].size());j++){cout<<n[i][j]<<" ";}cout<<endl;}cout<<endl;} void yes(bool a){cout<<(a?"yes":"no")<<endl;} void YES(bool a){cout<<(a?"YES":"NO")<<endl;} void Yes(bool a){cout<<(a?"Yes":"No")<<endl;} void possible(bool a){ cout<<(a?"possible":"impossible")<<endl; } void Possible(bool a){ cout<<(a?"Possible":"Impossible")<<endl; } void POSSIBLE(bool a){ cout<<(a?"POSSIBLE":"IMPOSSIBLE")<<endl; } template<class T>auto min(const T& a){ return *min_element(all(a)); } template<class T>auto max(const T& a){ return *max_element(all(a)); } template<class T,class F>void print(pair<T,F> a){cout<<a.fi<<" "<<a.se<<endl;} template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0;} template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0;} template<class T> void ifmin(T t,T u){if(t>u){cout<<-1<<endl;}else{cout<<t<<endl;}} template<class T> void ifmax(T t,T u){if(t>u){cout<<-1<<endl;}else{cout<<t<<endl;}} template<typename T,typename ...Args>auto make_vector(T x,int arg,Args ...args){if constexpr(sizeof...(args)==0)return vector<T>(arg,x);else return vector(arg,make_vector<T>(x,args...));} ll fastgcd(ll u,ll v){ll shl=0;while(u&&v&&u!=v){bool eu=!(u&1);bool ev=!(v&1);if(eu&&ev){++shl;u>>=1;v>>=1;}else if(eu&&!ev){u>>=1;}else if(!eu&&ev){v>>=1;}else if(u>=v){u=(u-v)>>1;}else{ll tmp=u;u=(v-u)>>1;v=tmp;}}return !u?v<<shl:u<<shl;} ll modPow(ll a, ll n, ll mod) { if(mod==1) return 0;ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; } vector<ll> divisor(ll x){ vector<ll> ans; for(ll i = 1; i * i <= x; i++){ if(x % i == 0) {ans.push_back(i); if(i*i!=x){ ans.push_back(x / ans[i]);}}}sor(ans); return ans; } ll pop(ll x){return __builtin_popcountll(x);} ll poplong(ll x){ll y=-1;while(x){x/=2;y++;}return y;} template<class T> struct Sum{ vector<T> data; Sum(const vector<T>& v):data(v.size()+1){ for(ll i=0;i<v.size();i++) data[i+1]=data[i]+v[i]; } T get(ll l,ll r) const { return data[r]-data[l]; } }; template<class T> struct Sum2{ vector<vector<T>> data; Sum2(const vector<vector<T>> &v):data(v.size()+1,vector<T>(v[0].size()+1)){ for(int i=0;i<v.size();i++) for(int j=0;j<v[i].size();j++) data[i+1][j+1]=data[i][j+1]+v[i][j]; for(int i=0;i<v.size();i++) for(int j=0;j<v[i].size();j++) data[i+1][j+1]+=data[i+1][j]; } T get(ll x1,ll y1,ll x2,ll y2) const { return data[x2][y2]+data[x1][y1]-data[x1][y2]-data[x2][y1]; } }; void cincout(){ ios::sync_with_stdio(false); std::cin.tie(nullptr); cout<< fixed << setprecision(10); } const int N = 3e5 + 9; namespace pcf { // initialize once by calling init() #define MAXN 10000010 // initial sieve limit #define MAX_PRIMES 1000010 // max size of the prime array for sieve #define PHI_N 100000 #define PHI_K 100 unsigned int ar[(MAXN >> 6) + 5] = {0}; int len = 0; // total number of primes generated by sieve int primes[MAX_PRIMES]; int counter[MAXN]; // counter[m] --> number of primes <= i int dp[PHI_N][PHI_K]; // precal of yo(n,k) bitset <MAXN> fl; void sieve(int n) { fl[1] = true; for (int i = 4; i <= n; i += 2) fl[i] = true; for (int i = 3; i * i <= n; i += 2) { if (!fl[i]) { for (int j = i * i; j <= n; j += i << 1) fl[j] = 1; } } for (int i = 1; i <= n; i++) { if (!fl[i]) primes[len++] = i; counter[i] = len; } } void init() { sieve(MAXN - 1); // precalculation of phi upto size (PHI_N,PHI_K) int k, n, res; for (n = 0; n < PHI_N; n++) dp[n][0] = n; for (k = 1; k < PHI_K; k++) { for (n = 0; n < PHI_N; n++) { dp[n][k] = dp[n][k - 1] - dp[n / primes[k - 1]][k - 1]; } } } // returns number of integers less or equal n which are // not divisible by any of the first k primes // recurrence --> yo(n , k) = yo(n , k-1) - yo(n / p_k , k-1) // for sum of primes yo(n,k)=yo(n,k-1)-p_k*yo(n/p_k,k-1) long long yo(long long n, int k) { if (n < PHI_N && k < PHI_K) return dp[n][k]; if (k == 1) return ((++n) >> 1); if (primes[k - 1] >= n) return 1; return yo(n, k - 1) - yo(n / primes[k - 1], k - 1); } long long Legendre(long long n) { if (n < MAXN) return counter[n]; int lim = sqrt(n) + 1; int k = upper_bound(primes, primes + len, lim) - primes; return yo(n, k) + (k - 1); } //complexity: n^(2/3).(log n^(1/3)) long long Lehmer(long long n) { if(n<0) return 0; if (n < MAXN) return counter[n]; long long w, res = 0; int i, j, a, b, c, lim; b = sqrt(n), c = Lehmer(cbrt(n)), a = Lehmer(sqrt(b)), b = Lehmer(b); res = yo(n, a) + (((b + a - 2) * (b - a + 1)) >> 1); for (i = a; i < b; i++) { w = n / primes[i]; lim = Lehmer(sqrt(w)), res -= Lehmer(w); if (i <= c) { for (j = i; j < lim; j++) { res += j; res -= Lehmer(w / primes[j]); } } } return res; } } int main() { cincout(); ll l,r; cin>>l>>r; pcf::init(); swap(l,r); cout<<pcf::Lehmer(l)-pcf::Lehmer(r-1)+pcf::Lehmer(2*l-1)-pcf::Lehmer(2*r-1)-(r==1)<<endl; }