結果
| 問題 |
No.1661 Sum is Prime (Hard Version)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-08-27 21:38:29 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
CE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 2,293 bytes |
| コンパイル時間 | 596 ms |
| コンパイル使用メモリ | 57,700 KB |
| 最終ジャッジ日時 | 2025-03-23 12:33:39 |
| 合計ジャッジ時間 | 1,290 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp:4:1: error: ‘uint64_t’ does not name a type
4 | uint64_t kth_root_integer(uint64_t a, int k) {
| ^~~~~~~~
main.cpp:3:1: note: ‘uint64_t’ is defined in header ‘<cstdint>’; did you forget to ‘#include <cstdint>’?
2 | #include<vector>
+++ |+#include <cstdint>
3 | using namespace std;
main.cpp: In member function ‘int64_t PrimeCount<LIM>::p2(int64_t, int64_t)’:
main.cpp:41:20: error: there are no arguments to ‘kth_root_integer’ that depend on a template parameter, so a declaration of ‘kth_root_integer’ must be available [-fpermissive]
41 | int64_t b = pi(kth_root_integer(x, 2));
| ^~~~~~~~~~~~~~~~
main.cpp:41:20: note: (if you use ‘-fpermissive’, G++ will accept your code, but allowing the use of an undeclared name is deprecated)
main.cpp: In member function ‘int64_t PrimeCount<LIM>::phi(int64_t, int64_t)’:
main.cpp:54:23: error: there are no arguments to ‘kth_root_integer’ that depend on a template parameter, so a declaration of ‘kth_root_integer’ must be available [-fpermissive]
54 | int64_t sx = pi(kth_root_integer(m, 2));
| ^~~~~~~~~~~~~~~~
main.cpp: In constructor ‘PrimeCount<LIM>::PrimeCount()’:
main.cpp:64:21: error: there are no arguments to ‘kth_root_integer’ that depend on a template parameter, so a declaration of ‘kth_root_integer’ must be available [-fpermissive]
64 | PrimeCount() : sq(kth_root_integer(LIM, 2)), prime_sum(sq + 1) {
| ^~~~~~~~~~~~~~~~
main.cpp: In member function ‘int64_t PrimeCount<LIM>::pi(int64_t)’:
main.cpp:73:17: error: there are no arguments to ‘kth_root_integer’ that depend on a template parameter, so a declaration of ‘kth_root_integer’ must be available [-fpermissive]
73 | int64_t m = kth_root_integer(n, 3);
| ^~~~~~~~~~~~~~~~
main.cpp: At global scope:
main.cpp:79:1: warning: ISO C++ forbids declaration of ‘ma
ソースコード
#include<iostream>
#include<vector>
using namespace std;
uint64_t kth_root_integer(uint64_t a, int k) {
if(k == 1) return a;
auto check = [&](uint32_t x) {
uint64_t mul = 1;
for(int j = 0; j < k; j++) {
if(__builtin_mul_overflow(mul, x, &mul)) return false;
}
return mul <= a;
};
uint64_t ret = 0;
for(int i = 31; i >= 0; i--) {
if(check(ret | (1u << i))) ret |= 1u << i;
}
return ret;
}
vector< bool > prime_table(int n) {
vector< bool > prime(n + 1, true);
if(n >= 0) prime[0] = false;
if(n >= 1) prime[1] = false;
for(int i = 2; i * i <= n; i++) {
if(!prime[i]) continue;
for(int j = i * i; j <= n; j += i) {
prime[j] = false;
}
}
return prime;
}
template< int64_t LIM = 100000000000LL >
struct PrimeCount {
private:
int64_t sq;
vector< bool > prime;
vector< int64_t > prime_sum, primes;
int64_t p2(int64_t x, int64_t y) {
if(x < 4) return 0;
int64_t a = pi(y);
int64_t b = pi(kth_root_integer(x, 2));
if(a >= b) return 0;
int64_t sum = (a - 2) * (a + 1) / 2 - (b - 2) * (b + 1) / 2;
for(int64_t i = a; i < b; i++) sum += pi(x / primes[i]);
return sum;
}
int64_t phi(int64_t m, int64_t n) {
if(m < 1) return 0;
if(n > m) return 1;
if(n < 1) return m;
if(m <= primes[n - 1] * primes[n - 1]) return pi(m) - n + 1;
if(m <= primes[n - 1] * primes[n - 1] * primes[n - 1] && m <= sq) {
int64_t sx = pi(kth_root_integer(m, 2));
int64_t ans = pi(m) - (sx + n - 2) * (sx - n + 1) / 2;
for(int64_t i = n; i < sx; ++i) ans += pi(m / primes[i]);
return ans;
}
return phi(m, n - 1) - phi(m / primes[n - 1], n - 1);
}
public:
PrimeCount() : sq(kth_root_integer(LIM, 2)), prime_sum(sq + 1) {
prime = prime_table(sq);
for(int i = 1; i <= sq; i++) prime_sum[i] = prime_sum[i - 1] + prime[i];
primes.reserve(prime_sum[sq]);
for(int i = 1; i <= sq; i++) if(prime[i]) primes.push_back(i);
}
int64_t pi(int64_t n) {
if(n <= sq) return prime_sum[n];
int64_t m = kth_root_integer(n, 3);
int64_t a = pi(m);
return phi(n, a) + a - 1 - p2(n, m);
}
};
long L,R;
main()
{
PrimeCount<>Q;
cin>>L>>R;
long ans=Q.pi(R)-Q.pi(L-1);
ans+=Q.pi(2*R-1);
ans-=Q.pi(2*L-1);
if(L==1&&R>=2)ans--;
cout<<ans<<endl;
}