結果
問題 |
No.1657 Sum is Prime (Easy Version)
|
ユーザー |
![]() |
提出日時 | 2021-08-27 21:45:10 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 579 ms / 2,000 ms |
コード長 | 1,932 bytes |
コンパイル時間 | 222 ms |
コンパイル使用メモリ | 82,304 KB |
実行使用メモリ | 89,600 KB |
最終ジャッジ日時 | 2024-11-21 01:25:32 |
合計ジャッジ時間 | 6,510 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 21 |
ソースコード
import sys int1 = lambda x: int(x)-1 p2D = lambda x: print(*x, sep="\n") def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() # dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] inf = 10**16 # md = 998244353 md = 10**9+7 from functools import lru_cache class Sieve: def __init__(self, n): self.plist = [2] # n以下の素数のリスト min_prime_factor = [2, 0] * (n // 2 + 1) for x in range(3, n + 1, 2): if min_prime_factor[x] == 0: min_prime_factor[x] = x self.plist.append(x) if x ** 2 > n: continue for y in range(x ** 2, n + 1, 2 * x): if min_prime_factor[y] == 0: min_prime_factor[y] = x self.min_prime_factor = min_prime_factor def isprime(self, x): return self.min_prime_factor[x] == x # これが素因数分解(prime factorization) def pfct(self, x): pp, ee = [], [] while x > 1: mpf = self.min_prime_factor[x] if pp and mpf == pp[-1]: ee[-1] += 1 else: pp.append(mpf) ee.append(1) x //= mpf return [(p, e) for p, e in zip(pp, ee)] @lru_cache() def isp(a): for p in sv.plist: if p**2>a:return True if a%p==0:return False mx=10**6+5 sv=Sieve(mx) l,r=LI() ans=0 for a in range(l,r+1): if sv.isprime(a):ans+=1 if a==r:break s=2*a+1 if s<mx: if sv.isprime(s):ans+=1 else: if isp(s):ans+=1 print(ans)