結果

問題 No.1660 Matrix Exponentiation
ユーザー chineristACchineristAC
提出日時 2021-08-27 21:46:58
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 206 ms / 2,000 ms
コード長 4,484 bytes
コンパイル時間 194 ms
コンパイル使用メモリ 82,308 KB
実行使用メモリ 96,684 KB
最終ジャッジ日時 2024-11-21 01:31:29
合計ジャッジ時間 4,204 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 49 ms
57,168 KB
testcase_01 AC 49 ms
57,312 KB
testcase_02 AC 49 ms
57,660 KB
testcase_03 AC 49 ms
57,764 KB
testcase_04 AC 49 ms
57,252 KB
testcase_05 AC 49 ms
57,680 KB
testcase_06 AC 49 ms
58,164 KB
testcase_07 AC 49 ms
57,372 KB
testcase_08 AC 50 ms
57,904 KB
testcase_09 AC 97 ms
88,568 KB
testcase_10 AC 79 ms
88,820 KB
testcase_11 AC 75 ms
86,152 KB
testcase_12 AC 50 ms
57,768 KB
testcase_13 AC 49 ms
58,184 KB
testcase_14 AC 49 ms
58,688 KB
testcase_15 AC 52 ms
58,736 KB
testcase_16 AC 52 ms
58,432 KB
testcase_17 AC 50 ms
57,532 KB
testcase_18 AC 54 ms
59,904 KB
testcase_19 AC 184 ms
90,256 KB
testcase_20 AC 163 ms
91,380 KB
testcase_21 AC 162 ms
82,720 KB
testcase_22 AC 98 ms
86,444 KB
testcase_23 AC 138 ms
87,068 KB
testcase_24 AC 206 ms
96,640 KB
testcase_25 AC 151 ms
91,336 KB
testcase_26 AC 206 ms
96,684 KB
testcase_27 AC 116 ms
88,548 KB
testcase_28 AC 204 ms
94,632 KB
testcase_29 AC 144 ms
88,456 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

def floor_sum(n: int, m: int, a: int, b: int) -> int:
    ans = 0

    if a >= m:
        ans += (n - 1) * n * (a // m) // 2
        a %= m

    if b >= m:
        ans += n * (b // m)
        b %= m

    y_max = (a * n + b) // m
    x_max = y_max * m - b

    if y_max == 0:
        return ans

    ans += (n - (x_max + a - 1) // a) * y_max
    ans += floor_sum(y_max, a, m, (a - x_max % a) % a)

    return ans

def divisors(M):
    d=[]
    i=1
    while M>=i**2:
        if M%i==0:
            d.append(i)
            if i**2!=M:
                d.append(M//i)
        i=i+1
    return d

def popcount(x):
    x = x - ((x >> 1) & 0x55555555)
    x = (x & 0x33333333) + ((x >> 2) & 0x33333333)
    x = (x + (x >> 4)) & 0x0f0f0f0f
    x = x + (x >> 8)
    x = x + (x >> 16)
    return x & 0x0000007f

def eratosthenes(n):
    res=[0 for i in range(n+1)]
    prime=set([])
    for i in range(2,n+1):
        if not res[i]:
            prime.add(i)
            for j in range(1,n//i+1):
                res[i*j]=1
    return prime

def factorization(n):
    res=[]
    for p in prime:
        if n%p==0:
            while n%p==0:
                n//=p
            res.append(p)
    if n!=1:
        res.append(n)
    return res

def euler_phi(n):
    res = n
    for x in range(2,n+1):
        if x ** 2 > n:
            break
        if n%x==0:
            res = res//x * (x-1)
            while n%x==0:
                n //= x
    if n!=1:
        res = res//n * (n-1)
    return res

def ind(b,n):
    res=0
    while n%b==0:
        res+=1
        n//=b
    return res

def isPrimeMR(n):
    if n==1:
        return 0
    d = n - 1
    d = d // (d & -d)
    L = [2, 3, 5, 7, 11, 13, 17]
    if n in L:
        return 1
    for a in L:
        t = d
        y = pow(a, t, n)
        if y == 1: continue
        while y != n - 1:
            y = (y * y) % n
            if y == 1 or t == n - 1: return 0
            t <<= 1
    return 1
def findFactorRho(n):
    from math import gcd
    m = 1 << n.bit_length() // 8
    for c in range(1, 99):
        f = lambda x: (x * x + c) % n
        y, r, q, g = 2, 1, 1, 1
        while g == 1:
            x = y
            for i in range(r):
                y = f(y)
            k = 0
            while k < r and g == 1:
                ys = y
                for i in range(min(m, r - k)):
                    y = f(y)
                    q = q * abs(x - y) % n
                g = gcd(q, n)
                k += m
            r <<= 1
        if g == n:
            g = 1
            while g == 1:
                ys = f(ys)
                g = gcd(abs(x - ys), n)
        if g < n:
            if isPrimeMR(g): return g
            elif isPrimeMR(n // g): return n // g
            return findFactorRho(g)
def primeFactor(n):
    i = 2
    ret = {}
    rhoFlg = 0
    while i*i <= n:
        k = 0
        while n % i == 0:
            n //= i
            k += 1
        if k: ret[i] = k
        i += 1 + i % 2
        if i == 101 and n >= 2 ** 20:
            while n > 1:
                if isPrimeMR(n):
                    ret[n], n = 1, 1
                else:
                    rhoFlg = 1
                    j = findFactorRho(n)
                    k = 0
                    while n % j == 0:
                        n //= j
                        k += 1
                    ret[j] = k

    if n > 1: ret[n] = 1
    if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}
    return ret

def divisors(n):
    res = [1]
    prime = primeFactor(n)
    for p in prime:
        newres = []
        for d in res:
            for j in range(prime[p]+1):
                newres.append(d*p**j)
        res = newres
    res.sort()
    return res

import sys,random,bisect
from collections import deque,defaultdict
from heapq import heapify,heappop,heappush
from itertools import permutations
from math import gcd,log

input = lambda :sys.stdin.readline().rstrip()
mi = lambda :map(int,input().split())
li = lambda :list(mi())

N,K = mi()
edge = [[] for v in range(N)]
deg = [0 for v in range(N)]
for _ in range(K):
    u,v = mi()
    edge[u-1].append(v-1)
    deg[v-1] += 1

deq = deque([v for v in range(N) if not deg[v]])
topo = []
while deq:
    v = deq.popleft()
    topo.append(v)
    for nv in edge[v]:
        deg[nv] -= 1
        if deg[nv]==0:
            deq.append(nv)

if len(topo)!=N:
    exit(print(-1))

dp = [0 for v in range(N)]
for v in topo[::-1]:
    for nv in edge[v]:
        dp[v] = max(dp[v],dp[nv]+1)

print(max(dp)+1)
0