結果

問題 No.1661 Sum is Prime (Hard Version)
ユーザー 👑 KazunKazun
提出日時 2021-08-27 21:56:38
言語 PyPy3
(7.3.15)
結果
RE  
実行時間 -
コード長 953 bytes
コンパイル時間 256 ms
コンパイル使用メモリ 82,140 KB
実行使用メモリ 82,304 KB
最終ジャッジ日時 2024-12-30 16:49:35
合計ジャッジ時間 13,235 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 48 ms
52,608 KB
testcase_01 AC 43 ms
52,352 KB
testcase_02 AC 825 ms
81,796 KB
testcase_03 RE -
testcase_04 RE -
testcase_05 AC 47 ms
52,992 KB
testcase_06 AC 54 ms
59,264 KB
testcase_07 AC 46 ms
52,736 KB
testcase_08 AC 53 ms
59,264 KB
testcase_09 AC 57 ms
59,008 KB
testcase_10 AC 59 ms
61,056 KB
testcase_11 AC 53 ms
60,672 KB
testcase_12 AC 736 ms
81,152 KB
testcase_13 AC 720 ms
81,280 KB
testcase_14 AC 811 ms
81,792 KB
testcase_15 AC 1,022 ms
81,152 KB
testcase_16 AC 858 ms
81,792 KB
testcase_17 AC 797 ms
81,652 KB
testcase_18 AC 365 ms
75,364 KB
testcase_19 AC 604 ms
79,616 KB
testcase_20 AC 388 ms
76,124 KB
testcase_21 AC 676 ms
77,956 KB
testcase_22 AC 1,282 ms
82,048 KB
testcase_23 AC 1,228 ms
82,304 KB
testcase_24 AC 1,014 ms
81,280 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#Thanks for https://judge.yosupo.jp/submission/33263
from math import sqrt
def prime_counting(n):
    if n==0:
        return 0

    n2 = int(n ** 0.5)
    ndn2 = int(n / n2)
    hl = [0] * ndn2
    for i in range(1, ndn2):
        hl[i] = int(n / i) - 1
    hs = list(range(-1, n2))
    pi = 0
    for x in range(2, n2 + 1):
        if hs[x] == hs[x - 1]:
            continue
        x2 = x * x
        imax = min(ndn2, int(n / x2) + 1)
        ix = x
        for i in range(1, imax):
            if ix < ndn2:
                hl[i] -= hl[ix]
            else:
                hl[i] -= hs[int(n / ix)]
            hl[i] += pi
            ix += x
        for k in range(n2, x2 - 1, -1):
            hs[k] -= hs[int(k / x)] - pi
        pi += 1
    return hl[1]
#==================================================
L,R=map(int,input().split())

alpha=prime_counting(R)-prime_counting(L-1)
beta =prime_counting(2*R)-prime_counting(2*L)

print(alpha+beta)
0