結果
問題 | No.1661 Sum is Prime (Hard Version) |
ユーザー | tokusakurai |
提出日時 | 2021-08-27 21:57:45 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,674 bytes |
コンパイル時間 | 2,795 ms |
コンパイル使用メモリ | 207,640 KB |
実行使用メモリ | 46,084 KB |
最終ジャッジ日時 | 2024-12-30 16:49:45 |
合計ジャッジ時間 | 7,629 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 112 ms
46,064 KB |
testcase_01 | AC | 111 ms
45,976 KB |
testcase_02 | AC | 184 ms
45,952 KB |
testcase_03 | WA | - |
testcase_04 | AC | 116 ms
46,080 KB |
testcase_05 | AC | 113 ms
46,080 KB |
testcase_06 | AC | 111 ms
45,952 KB |
testcase_07 | AC | 113 ms
45,952 KB |
testcase_08 | AC | 115 ms
46,080 KB |
testcase_09 | AC | 111 ms
46,012 KB |
testcase_10 | AC | 111 ms
46,080 KB |
testcase_11 | AC | 113 ms
46,080 KB |
testcase_12 | AC | 165 ms
46,064 KB |
testcase_13 | AC | 161 ms
46,060 KB |
testcase_14 | AC | 175 ms
46,060 KB |
testcase_15 | AC | 210 ms
45,952 KB |
testcase_16 | AC | 185 ms
45,952 KB |
testcase_17 | AC | 181 ms
46,064 KB |
testcase_18 | AC | 140 ms
46,080 KB |
testcase_19 | AC | 147 ms
46,032 KB |
testcase_20 | AC | 131 ms
46,080 KB |
testcase_21 | AC | 176 ms
46,032 KB |
testcase_22 | AC | 244 ms
46,012 KB |
testcase_23 | AC | 235 ms
45,972 KB |
testcase_24 | AC | 202 ms
45,952 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using int64 = long long; const int mod = 1e9 + 7; //const int mod = 998244353; const int64 infll = (1LL << 62) - 1; const int inf = (1 << 30) - 1; struct IoSetup { IoSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(10); cerr << fixed << setprecision(10); } } iosetup; template< typename T1, typename T2 > ostream &operator<<(ostream &os, const pair< T1, T2 > &p) { os << p.first << " " << p.second; return os; } template< typename T1, typename T2 > istream &operator>>(istream &is, pair< T1, T2 > &p) { is >> p.first >> p.second; return is; } template< typename T > ostream &operator<<(ostream &os, const vector< T > &v) { for(int i = 0; i < (int) v.size(); i++) { os << v[i] << (i + 1 != v.size() ? " " : ""); } return os; } template< typename T > istream &operator>>(istream &is, vector< T > &v) { for(T &in : v) is >> in; return is; } template< typename T1, typename T2 > inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } template< typename T1, typename T2 > inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); } template< typename T = int64 > vector< T > make_v(size_t a) { return vector< T >(a); } template< typename T, typename... Ts > auto make_v(size_t a, Ts... ts) { return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...)); } template< typename T, typename V > typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) { t = v; } template< typename T, typename V > typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) { for(auto &e : t) fill_v(e, v); } template< typename F > struct FixPoint : F { FixPoint(F &&f) : F(forward< F >(f)) {} template< typename... Args > decltype(auto) operator()(Args &&... args) const { return F::operator()(*this, forward< Args >(args)...); } }; template< typename F > inline decltype(auto) MFP(F &&f) { return FixPoint< F >{forward< F >(f)}; } /** * @brief Kth-Root */ uint64_t kth_root(uint64_t a, int k) { if(k == 1) return a; auto check = [&](uint32_t x) { uint64_t mul = 1; for(int j = 0; j < k; j++) { if(__builtin_mul_overflow(mul, x, &mul)) return false; } return mul <= a; }; uint64_t ret = 0; for(int i = 31; i >= 0; i--) { if(check(ret | (1u << i))) ret |= 1u << i; } return ret; } vector< bool > prime_table(int n) { vector< bool > prime(n + 1, true); if(n >= 0) prime[0] = false; if(n >= 1) prime[1] = false; for(int64_t i = 2; i * i <= n; i++) { if(!prime[i]) continue; for(int64_t j = i + i; j <= n; j += i) { prime[j] = false; } } return prime; } template< int64_t LIM = 100000000000LL > struct PrimeCount { private: int64_t sq; vector< bool > prime; vector< int > prime_sum, primes; int64_t p2(int64_t x, int64_t y) { if(x < 4) return 0; int64_t a = pi(y); int64_t b = pi(kth_root(x, 2)); if(a >= b) return 0; int64_t sum = (a - 2) * (a + 1) / 2 - (b - 2) * (b + 1) / 2; for(int64_t i = a; i < b; i++) sum += pi(x / primes[i]); return sum; } int64_t p3(int64_t x, int64_t y) { int64_t x13 = kth_root(x, 3), ans = 0; if(y <= x13) { int64_t a = pi(y); int64_t pi_x13 = pi(x13); for(int64_t i = a + 1; i <= pi_x13; i++) { int64_t xi = x / primes[i - 1]; int64_t bi = pi(kth_root(xi, 2)); for(int j = i; j <= bi; j++) { ans += pi(xi / primes[j - 1]) - (j - 1); } } } return ans; } int64_t phi(int64_t m, int64_t n) { if(m < 1) return 0; if(n > m) return 1; if(n < 1) return m; if(m <= primes[n - 1] * primes[n - 1]) return pi(m) - n + 1; if(m <= primes[n - 1] * primes[n - 1] * primes[n - 1] && m <= sq) { int64_t sx = pi(kth_root(m, 2)); int64_t ans = pi(m) - (sx + n - 2) * (sx - n + 1) / 2; for(int64_t i = n; i < sx; ++i) ans += pi(m / primes[i]); return ans; } return phi(m, n - 1) - phi(m / primes[n - 1], n - 1); } public: PrimeCount() : sq(1e7 + 5), prime_sum(sq + 1) { prime = prime_table(sq); for(int i = 1; i <= sq; i++) prime_sum[i] = prime_sum[i - 1] + prime[i]; primes.reserve(prime_sum[sq]); for(int i = 1; i <= sq; i++) if(prime[i]) primes.push_back(i); } int64_t pi(int64_t n) { if(n <= sq) return prime_sum[n]; int64_t m = kth_root(n, 4); int64_t a = pi(m); return phi(n, a) + a - 1 - p2(n, m) - p3(n, m); } }; int main() { long long L, R; cin >> L >> R; PrimeCount pc; cout << pc.pi(R)-pc.pi(L-1)+pc.pi(2*R-1)-pc.pi(2*L) << '\n'; }