結果
問題 | No.1661 Sum is Prime (Hard Version) |
ユーザー | leaf_1415 |
提出日時 | 2021-08-27 22:07:38 |
言語 | C++11 (gcc 11.4.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 8,364 bytes |
コンパイル時間 | 2,137 ms |
コンパイル使用メモリ | 114,344 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-11-21 02:38:09 |
合計ジャッジ時間 | 3,356 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 22 ms
6,820 KB |
testcase_03 | WA | - |
testcase_04 | AC | 1 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,820 KB |
testcase_06 | AC | 2 ms
6,820 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 2 ms
6,820 KB |
testcase_09 | AC | 2 ms
6,816 KB |
testcase_10 | AC | 2 ms
6,816 KB |
testcase_11 | AC | 2 ms
6,816 KB |
testcase_12 | AC | 21 ms
6,816 KB |
testcase_13 | AC | 20 ms
6,816 KB |
testcase_14 | AC | 23 ms
6,816 KB |
testcase_15 | AC | 28 ms
6,820 KB |
testcase_16 | AC | 24 ms
6,816 KB |
testcase_17 | AC | 22 ms
6,820 KB |
testcase_18 | AC | 10 ms
6,820 KB |
testcase_19 | AC | 17 ms
6,816 KB |
testcase_20 | AC | 11 ms
6,816 KB |
testcase_21 | AC | 19 ms
6,816 KB |
testcase_22 | AC | 35 ms
6,816 KB |
testcase_23 | AC | 34 ms
6,816 KB |
ソースコード
#include <iostream> #include <iomanip> #include <cstdio> #include <cmath> #include <ctime> #include <cstdlib> #include <cassert> #include <vector> #include <list> #include <stack> #include <queue> #include <deque> #include <map> #include <set> #include <bitset> #include <string> #include <algorithm> #include <utility> #include <complex> #include <unordered_set> #include <unordered_map> #define rep(x, s, t) for(ll x = (s); (x) <= (t); (x)++) #define per(x, s, t) for(ll x = (s); (x) >= (t); (x)--) #define reps(x, s) for(ll x = 0; (x) < (ll)(s).size(); (x)++) #define chmin(x, y) (x) = min((x), (y)) #define chmax(x, y) (x) = max((x), (y)) #define sz(x) ((ll)(x).size()) #define ceil(x, y) (((x)+(y)-1) / (y)) #define all(x) (x).begin(),(x).end() #define outl(...) dump_func(__VA_ARGS__) #define outf(x) cout << fixed << setprecision(16) << (x) << endl #define inf 1e18 const double PI = 3.1415926535897932384626433; using namespace std; typedef long long llint; typedef long long ll; typedef pair<ll, ll> P; struct edge{ ll to, cost; edge(){} edge(ll a, ll b){ to = a, cost = b;} }; const int dx[] = {1, 0, -1, 0}, dy[] = {0, -1, 0, 1}; const int mod = 1000000007; //const int mod = 998244353; struct mint{ ll x; mint(ll y = 0){x = y; if(x < 0 || x >= mod) x = (x%mod+mod)%mod;} mint(const mint &ope) {x = ope.x;} mint operator-(){return mint(-x);} mint operator+(const mint &ope){return mint(x) += ope;} mint operator-(const mint &ope){return mint(x) -= ope;} mint operator*(const mint &ope){return mint(x) *= ope;} mint operator/(const mint &ope){return mint(x) /= ope;} mint& operator+=(const mint &ope){ x += ope.x; if(x >= mod) x -= mod; return *this; } mint& operator-=(const mint &ope){ x += mod - ope.x; if(x >= mod) x -= mod; return *this; } mint& operator*=(const mint &ope){ ll tmp = x; tmp *= ope.x, tmp %= mod; x = tmp; return *this; } mint& operator/=(const mint &ope){ ll n = mod-2; mint mul = ope; while(n){ if(n & 1) *this *= mul; mul *= mul; n >>= 1; } return *this; } mint inverse(){return mint(1) / *this;} bool operator ==(const mint &ope){return x == ope.x;} bool operator !=(const mint &ope){return x != ope.x;} bool operator <(const mint &ope){return x < ope.x;} }; mint modpow(mint a, ll n){ if(n == 0) return mint(1); if(n % 2) return a * modpow(a, n-1); else return modpow(a*a, n/2); } istream& operator >>(istream &is, mint &ope){ ll t; is >> t, ope.x = t; return is; } ostream& operator <<(ostream &os, mint &ope){return os << ope.x;} ostream& operator <<(ostream &os, const mint &ope){return os << ope.x;} vector<mint> fact, fact_inv; void make_fact(int n){ fact.resize(n+1), fact_inv.resize(n+1); fact[0] = mint(1); rep(i, 1, n) fact[i] = fact[i-1] * mint(i); fact_inv[n] = fact[n].inverse(); per(i, n-1, 0) fact_inv[i] = fact_inv[i+1] * mint(i+1); } mint comb(int n, int k){ if(n < 0 || k < 0 || n < k) return mint(0); return fact[n] * fact_inv[k] * fact_inv[n-k];} mint perm(int n, int k){ return comb(n, k) * fact[k]; } vector<int> prime, pvec; void make_prime(int n){ prime.resize(n+1); rep(i, 2, n){ if(prime[i]) continue; for(int j = i; j <= n; j+=i) prime[j] = i; } rep(i, 2, n) if(prime[i] == i) pvec.push_back(i); } bool exceed(ll x, ll y, ll m){return x >= m / y + 1;} void mark(){ cout << "*" << endl; } void yes(){ cout << "YES" << endl; } void no(){ cout << "NO" << endl; } ll sgn(ll x){ if(x > 0) return 1; if(x < 0) return -1; return 0;} ll gcd(ll a, ll b){if(b == 0) return a; return gcd(b, a%b);} ll lcm(ll a, ll b){return a/gcd(a, b)*b;} ll digitnum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret++; return ret;} ll digitsum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret += x % b; return ret;} string lltos(ll x){string ret; for(;x;x/=10) ret += x % 10 + '0'; reverse(ret.begin(), ret.end()); return ret;} ll stoll(string &s){ll ret = 0; for(auto c : s) ret *= 10, ret += c - '0'; return ret;} template<typename T> void uniq(T &vec){ sort(vec.begin(), vec.end()); vec.erase(unique(vec.begin(), vec.end()), vec.end());} template<class S, class T> pair<S, T>& operator+=(pair<S,T> &s, const pair<S,T> &t){ s.first += t.first, s.second += t.second; return s; } template<class S, class T> pair<S, T>& operator-=(pair<S,T> &s, const pair<S,T> &t){ s.first -= t.first, s.second -= t.second; return s; } template<class S, class T> pair<S, T> operator+(const pair<S,T> &s, const pair<S,T> &t){ return pair<S,T>(s.first+t.first, s.second+t.second); } template<class S, class T> pair<S, T> operator-(const pair<S,T> &s, const pair<S,T> &t){ return pair<S,T>(s.first-t.first, s.second-t.second); } template<typename T> ostream& operator << (ostream& os, vector<T>& vec) { for(int i = 0; i < vec.size(); i++) os << vec[i] << (i + 1 == vec.size() ? "" : " "); return os; } template<typename T> ostream& operator << (ostream& os, deque<T>& deq) { for(int i = 0; i < deq.size(); i++) os << deq[i] << (i + 1 == deq.size() ? "" : " "); return os; } template<typename T, typename U> ostream& operator << (ostream& os, pair<T, U>& pair_var) { os << "(" << pair_var.first << ", " << pair_var.second << ")"; return os; } template<typename T, typename U> ostream& operator << (ostream& os, const pair<T, U>& pair_var) { os << "(" << pair_var.first << ", " << pair_var.second << ")"; return os; } template<typename T, typename U> ostream& operator << (ostream& os, map<T, U>& map_var) { for(typename map<T, U>::iterator itr = map_var.begin(); itr != map_var.end(); itr++) { os << "(" << itr->first << ", " << itr->second << ")"; itr++; if(itr != map_var.end()) os << ","; itr--; } return os; } template<typename T> ostream& operator << (ostream& os, set<T>& set_var) { for(typename set<T>::iterator itr = set_var.begin(); itr != set_var.end(); itr++) { os << *itr; ++itr; if(itr != set_var.end()) os << " "; itr--; } return os; } template<typename T> ostream& operator << (ostream& os, multiset<T>& set_var) { for(typename multiset<T>::iterator itr = set_var.begin(); itr != set_var.end(); itr++) { os << *itr; ++itr; if(itr != set_var.end()) os << " "; itr--; } return os; } template<typename T> void outa(T a[], ll s, ll t){rep(i, s, t){ cout << a[i]; if(i < t) cout << " ";}cout << endl;} void dump_func(){cout << endl;} template <class Head, class... Tail> void dump_func(Head &&head, Tail &&... tail) { cout << head; if(sizeof...(Tail) > 0) cout << " "; dump_func(std::move(tail)...); } using i64 = long long; int isqrt(i64 n) { return sqrtl(n); } __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) i64 prime_pi(const i64 N) { if (N <= 1) return 0; if (N == 2) return 1; const int v = isqrt(N); int s = (v + 1) / 2; vector<int> smalls(s); for (int i = 1; i < s; ++i) smalls[i] = i; vector<int> roughs(s); for (int i = 0; i < s; ++i) roughs[i] = 2 * i + 1; vector<i64> larges(s); for (int i = 0; i < s; ++i) larges[i] = (N / (2 * i + 1) - 1) / 2; vector<bool> skip(v + 1); const auto divide = [] (i64 n, i64 d) -> int { return double(n) / d; }; const auto half = [] (int n) -> int { return (n - 1) >> 1; }; int pc = 0; for (int p = 3; p <= v; p += 2) if (!skip[p]) { int q = p * p; if (i64(q) * q > N) break; skip[p] = true; for (int i = q; i <= v; i += 2 * p) skip[i] = true; int ns = 0; for (int k = 0; k < s; ++k) { int i = roughs[k]; if (skip[i]) continue; i64 d = i64(i) * p; larges[ns] = larges[k] - (d <= v ? larges[smalls[d >> 1] - pc] : smalls[half(divide(N, d))]) + pc; roughs[ns++] = i; } s = ns; for (int i = half(v), j = ((v / p) - 1) | 1; j >= p; j -= 2) { int c = smalls[j >> 1] - pc; for (int e = (j * p) >> 1; i >= e; --i) smalls[i] -= c; } ++pc; } larges[0] += i64(s + 2 * (pc - 1)) * (s - 1) / 2; for (int k = 1; k < s; ++k) larges[0] -= larges[k]; for (int l = 1; l < s; ++l) { int q = roughs[l]; i64 M = N / q; int e = smalls[half(M / q)] - pc; if (e < l + 1) break; i64 t = 0; for (int k = l + 1; k <= e; ++k) t += smalls[half(divide(M, roughs[k]))]; larges[0] += t - i64(e - l) * (pc + l - 1); } return larges[0] + 1; } ll l, r; int main(void) { ios::sync_with_stdio(0); cin.tie(0); cin >> l >> r; ll ans = prime_pi(r) - prime_pi(l-1); ans += prime_pi(2*r-1) - prime_pi(2*l); outl(ans); return 0; }