結果

問題 No.1661 Sum is Prime (Hard Version)
ユーザー leaf_1415leaf_1415
提出日時 2021-08-27 22:07:38
言語 C++11
(gcc 11.4.0)
結果
WA  
実行時間 -
コード長 8,364 bytes
コンパイル時間 2,137 ms
コンパイル使用メモリ 114,344 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-11-21 02:38:09
合計ジャッジ時間 3,356 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 22 ms
6,820 KB
testcase_03 WA -
testcase_04 AC 1 ms
6,816 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 2 ms
6,816 KB
testcase_08 AC 2 ms
6,820 KB
testcase_09 AC 2 ms
6,816 KB
testcase_10 AC 2 ms
6,816 KB
testcase_11 AC 2 ms
6,816 KB
testcase_12 AC 21 ms
6,816 KB
testcase_13 AC 20 ms
6,816 KB
testcase_14 AC 23 ms
6,816 KB
testcase_15 AC 28 ms
6,820 KB
testcase_16 AC 24 ms
6,816 KB
testcase_17 AC 22 ms
6,820 KB
testcase_18 AC 10 ms
6,820 KB
testcase_19 AC 17 ms
6,816 KB
testcase_20 AC 11 ms
6,816 KB
testcase_21 AC 19 ms
6,816 KB
testcase_22 AC 35 ms
6,816 KB
testcase_23 AC 34 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstdlib>
#include <cassert>
#include <vector>
#include <list>
#include <stack>
#include <queue>
#include <deque>
#include <map>
#include <set>
#include <bitset>
#include <string>
#include <algorithm>
#include <utility>
#include <complex>
#include <unordered_set>
#include <unordered_map>
#define rep(x, s, t) for(ll x = (s); (x) <= (t); (x)++)
#define per(x, s, t) for(ll x = (s); (x) >= (t); (x)--)
#define reps(x, s) for(ll x = 0; (x) < (ll)(s).size(); (x)++)
#define chmin(x, y) (x) = min((x), (y))
#define chmax(x, y) (x) = max((x), (y))
#define sz(x) ((ll)(x).size())
#define ceil(x, y) (((x)+(y)-1) / (y))
#define all(x) (x).begin(),(x).end()
#define outl(...) dump_func(__VA_ARGS__)
#define outf(x) cout << fixed << setprecision(16) << (x) << endl
#define inf 1e18
const double PI = 3.1415926535897932384626433;

using namespace std;

typedef long long llint;
typedef long long ll;
typedef pair<ll, ll> P;

struct edge{
	ll to, cost;
	edge(){}
	edge(ll a, ll b){ to = a, cost = b;}
};
const int dx[] = {1, 0, -1, 0}, dy[] = {0, -1, 0, 1};

const int mod = 1000000007;
//const int mod = 998244353;

struct mint{
	ll x;
	mint(ll y = 0){x = y; if(x < 0 || x >= mod) x = (x%mod+mod)%mod;}
	mint(const mint &ope) {x = ope.x;}
	
	mint operator-(){return mint(-x);}
	mint operator+(const mint &ope){return mint(x) += ope;}
	mint operator-(const mint &ope){return mint(x) -= ope;}
	mint operator*(const mint &ope){return mint(x) *= ope;}
	mint operator/(const mint &ope){return mint(x) /= ope;}
	mint& operator+=(const mint &ope){
		x += ope.x;
		if(x >= mod) x -= mod;
		return *this;
	}
	mint& operator-=(const mint &ope){
		x += mod - ope.x;
		if(x >= mod) x -= mod;
		return *this;
	}
	mint& operator*=(const mint &ope){
		ll tmp = x;
		tmp *= ope.x, tmp %= mod;
		x = tmp;
		return *this;
	}
	mint& operator/=(const mint &ope){
		ll n = mod-2; mint mul = ope;
		while(n){
			if(n & 1) *this *= mul;
			mul *= mul;
			n >>= 1;
		}
		return *this;
	}
	mint inverse(){return mint(1) / *this;}
	bool operator ==(const mint &ope){return x == ope.x;}
	bool operator !=(const mint &ope){return x != ope.x;}
	bool operator <(const mint &ope){return x < ope.x;}
};
mint modpow(mint a, ll n){
	if(n == 0) return mint(1);
	if(n % 2) return a * modpow(a, n-1);
	else return modpow(a*a, n/2);
}
istream& operator >>(istream &is, mint &ope){
	ll t; is >> t, ope.x = t;
	return is;
}
ostream& operator <<(ostream &os, mint &ope){return os << ope.x;}
ostream& operator <<(ostream &os, const mint &ope){return os << ope.x;}

vector<mint> fact, fact_inv;
void make_fact(int n){
	fact.resize(n+1), fact_inv.resize(n+1);
	fact[0] = mint(1); rep(i, 1, n) fact[i] = fact[i-1] * mint(i);
	fact_inv[n] = fact[n].inverse(); per(i, n-1, 0) fact_inv[i] = fact_inv[i+1] * mint(i+1);
}
mint comb(int n, int k){ if(n < 0 || k < 0 || n < k) return mint(0); return fact[n] * fact_inv[k] * fact_inv[n-k];}
mint perm(int n, int k){ return comb(n, k) * fact[k]; }

vector<int> prime, pvec;
void make_prime(int n){
	prime.resize(n+1);
	rep(i, 2, n){
		if(prime[i]) continue;
		for(int j = i; j <= n; j+=i) prime[j] = i;
	}
	rep(i, 2, n) if(prime[i] == i) pvec.push_back(i);
}

bool exceed(ll x, ll y, ll m){return x >= m / y + 1;}
void mark(){ cout << "*" << endl; }
void yes(){ cout << "YES" << endl; }
void no(){ cout << "NO" << endl; }
ll sgn(ll x){ if(x > 0) return 1; if(x < 0) return -1; return 0;}
ll gcd(ll a, ll b){if(b == 0) return a; return gcd(b, a%b);}
ll lcm(ll a, ll b){return a/gcd(a, b)*b;}
ll digitnum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret++; return ret;}
ll digitsum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret += x % b; return ret;}
string lltos(ll x){string ret; for(;x;x/=10) ret += x % 10 + '0'; reverse(ret.begin(), ret.end()); return ret;}
ll stoll(string &s){ll ret = 0; for(auto c : s) ret *= 10, ret += c - '0'; return ret;}
template<typename T>
void uniq(T &vec){ sort(vec.begin(), vec.end()); vec.erase(unique(vec.begin(), vec.end()), vec.end());}

template<class S, class T> pair<S, T>& operator+=(pair<S,T> &s, const pair<S,T> &t){
	s.first += t.first, s.second += t.second;
	return s;
}
template<class S, class T> pair<S, T>& operator-=(pair<S,T> &s, const pair<S,T> &t){
	s.first -= t.first, s.second -= t.second;
	return s;
}
template<class S, class T> pair<S, T> operator+(const pair<S,T> &s, const pair<S,T> &t){
	return pair<S,T>(s.first+t.first, s.second+t.second);
}
template<class S, class T> pair<S, T> operator-(const pair<S,T> &s, const pair<S,T> &t){
	return pair<S,T>(s.first-t.first, s.second-t.second);
}
template<typename T>
ostream& operator << (ostream& os, vector<T>& vec) {
	for(int i = 0; i < vec.size(); i++) os << vec[i] << (i + 1 == vec.size() ? "" : " ");
	return os;
}
template<typename T>
ostream& operator << (ostream& os, deque<T>& deq) {
	for(int i = 0; i < deq.size(); i++) os << deq[i] << (i + 1 == deq.size() ? "" : " ");
	return os;
}
template<typename T, typename U>
ostream& operator << (ostream& os, pair<T, U>& pair_var) {
	os << "(" << pair_var.first << ", " << pair_var.second << ")";
	return os;
}
template<typename T, typename U>
ostream& operator << (ostream& os, const pair<T, U>& pair_var) {
	os << "(" << pair_var.first << ", " << pair_var.second << ")";
	return os;
}
template<typename T, typename U>
ostream& operator << (ostream& os, map<T, U>& map_var) {
	for(typename map<T, U>::iterator itr = map_var.begin(); itr != map_var.end(); itr++) {
		os << "(" << itr->first << ", " << itr->second << ")";
		itr++; if(itr != map_var.end()) os << ","; itr--;
	}
	return os;
}
template<typename T>
ostream& operator << (ostream& os, set<T>& set_var) {
	for(typename set<T>::iterator itr = set_var.begin(); itr != set_var.end(); itr++) {
		os << *itr; ++itr; if(itr != set_var.end()) os << " "; itr--;
	}
	return os;
}
template<typename T>
ostream& operator << (ostream& os, multiset<T>& set_var) {
	for(typename multiset<T>::iterator itr = set_var.begin(); itr != set_var.end(); itr++) {
		os << *itr; ++itr; if(itr != set_var.end()) os << " "; itr--;
	}
	return os;
}
template<typename T>
void outa(T a[], ll s, ll t){rep(i, s, t){ cout << a[i]; if(i < t) cout << " ";}cout << endl;}
void dump_func(){cout << endl;}
template <class Head, class... Tail>
void dump_func(Head &&head, Tail &&... tail) {
	cout << head;
	if(sizeof...(Tail) > 0) cout << " ";
	dump_func(std::move(tail)...);
}

using i64 = long long;

int isqrt(i64 n) {
  return sqrtl(n);
}

__attribute__((target("avx2"), optimize("O3", "unroll-loops")))
i64 prime_pi(const i64 N) {
  if (N <= 1) return 0;
  if (N == 2) return 1;
  const int v = isqrt(N);
  int s = (v + 1) / 2;
  vector<int> smalls(s); for (int i = 1; i < s; ++i) smalls[i] = i;
  vector<int> roughs(s); for (int i = 0; i < s; ++i) roughs[i] = 2 * i + 1;
  vector<i64> larges(s); for (int i = 0; i < s; ++i) larges[i] = (N / (2 * i + 1) - 1) / 2;
  vector<bool> skip(v + 1);
  const auto divide = [] (i64 n, i64 d) -> int { return double(n) / d; };
  const auto half = [] (int n) -> int { return (n - 1) >> 1; };
  int pc = 0;
  for (int p = 3; p <= v; p += 2) if (!skip[p]) {
    int q = p * p;
    if (i64(q) * q > N) break;
    skip[p] = true;
    for (int i = q; i <= v; i += 2 * p) skip[i] = true;
    int ns = 0;
    for (int k = 0; k < s; ++k) {
      int i = roughs[k];
      if (skip[i]) continue;
      i64 d = i64(i) * p;
      larges[ns] = larges[k] - (d <= v ? larges[smalls[d >> 1] - pc] : smalls[half(divide(N, d))]) + pc;
      roughs[ns++] = i;
    }
    s = ns;
    for (int i = half(v), j = ((v / p) - 1) | 1; j >= p; j -= 2) {
      int c = smalls[j >> 1] - pc;
      for (int e = (j * p) >> 1; i >= e; --i) smalls[i] -= c;
    }
    ++pc;
  }
  larges[0] += i64(s + 2 * (pc - 1)) * (s - 1) / 2;
  for (int k = 1; k < s; ++k) larges[0] -= larges[k];
  for (int l = 1; l < s; ++l) {
    int q = roughs[l];
    i64 M = N / q;
    int e = smalls[half(M / q)] - pc;
    if (e < l + 1) break;
    i64 t = 0;
    for (int k = l + 1; k <= e; ++k) t += smalls[half(divide(M, roughs[k]))];
    larges[0] += t - i64(e - l) * (pc + l - 1);
  }
  return larges[0] + 1;
}

ll l, r;

int main(void)
{
	ios::sync_with_stdio(0);
	cin.tie(0);
	
	cin >> l >> r;
	ll ans = prime_pi(r) - prime_pi(l-1);
	ans += prime_pi(2*r-1) - prime_pi(2*l);
	outl(ans);
	
	return 0;
}
0