結果
問題 | No.1661 Sum is Prime (Hard Version) |
ユーザー | null |
提出日時 | 2021-08-27 22:20:23 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 413 ms / 3,000 ms |
コード長 | 5,768 bytes |
コンパイル時間 | 9,992 ms |
コンパイル使用メモリ | 477,468 KB |
実行使用メモリ | 6,272 KB |
最終ジャッジ日時 | 2024-12-30 16:50:34 |
合計ジャッジ時間 | 12,844 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 11 ms
6,016 KB |
testcase_01 | AC | 11 ms
6,144 KB |
testcase_02 | AC | 248 ms
6,144 KB |
testcase_03 | AC | 11 ms
6,144 KB |
testcase_04 | AC | 11 ms
6,016 KB |
testcase_05 | AC | 10 ms
6,144 KB |
testcase_06 | AC | 11 ms
6,016 KB |
testcase_07 | AC | 10 ms
6,144 KB |
testcase_08 | AC | 11 ms
6,144 KB |
testcase_09 | AC | 10 ms
6,016 KB |
testcase_10 | AC | 11 ms
6,144 KB |
testcase_11 | AC | 11 ms
6,144 KB |
testcase_12 | AC | 196 ms
6,272 KB |
testcase_13 | AC | 192 ms
6,144 KB |
testcase_14 | AC | 220 ms
6,272 KB |
testcase_15 | AC | 313 ms
6,272 KB |
testcase_16 | AC | 255 ms
6,272 KB |
testcase_17 | AC | 232 ms
6,272 KB |
testcase_18 | AC | 78 ms
6,272 KB |
testcase_19 | AC | 141 ms
6,272 KB |
testcase_20 | AC | 78 ms
6,144 KB |
testcase_21 | AC | 226 ms
6,272 KB |
testcase_22 | AC | 154 ms
6,144 KB |
testcase_23 | AC | 413 ms
6,272 KB |
testcase_24 | AC | 311 ms
6,272 KB |
ソースコード
/* このコード、と~おれ! Be accepted! ∧_∧ (。・ω・。)つ━☆・*。 ⊂ ノ ・゜+. しーJ °。+ *´¨) .· ´¸.·*´¨) ¸.·*¨) (¸.·´ (¸.·'* ☆ */ #include <cstdio> #include <algorithm> #include <string> #include <cmath> #include <cstring> #include <vector> #include <numeric> #include <iostream> #include <random> #include <map> #include <unordered_map> #include <queue> #include <regex> #include <functional> #include <complex> #include <list> #include <cassert> #include <iomanip> #include <set> #include <stack> #include <bitset> #include <array> #include <chrono> //#pragma GCC target("arch=skylake-avx512") #pragma GCC target("avx2") //#pragma GCC optimize("O3") #pragma GCC optimize("Ofast") #pragma GCC target("sse4") #pragma GCC optimize("unroll-loops") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #define repeat(i, n, m) for(int i = n; i < (m); ++i) #define rep(i, n) for(int i = 0; i < (n); ++i) #define printynl(a) printf(a ? "yes\n" : "no\n") #define printyn(a) printf(a ? "Yes\n" : "No\n") #define printYN(a) printf(a ? "YES\n" : "NO\n") #define printim(a) printf(a ? "possible\n" : "imposible\n") #define printdb(a) printf("%.50lf\n", a) #define printLdb(a) printf("%.50Lf\n", a) #define printdbd(a) printf("%.16lf\n", a) #define prints(s) printf("%s\n", s.c_str()) #define all(x) (x).begin(), (x).end() #define deg_to_rad(deg) (((deg)/360.0L)*2.0L*PI) #define rad_to_deg(rad) (((rad)/2.0L/PI)*360.0L) #define Please return #define AC 0 #define manhattan_dist(a, b, c, d) (abs(a - c) + abs(b - d)) using ll = long long; using ull = unsigned long long; constexpr int INF = 1073741823; constexpr int MINF = -1073741823; constexpr ll LINF = ll(4661686018427387903); constexpr ll MOD = 1e9 + 7; constexpr ll mod = 998244353; constexpr long double eps = 1e-6; const long double PI = acosl(-1.0L); using namespace std; void scans(string& str) { char c; str = ""; scanf("%c", &c); if (c == '\n')scanf("%c", &c); while (c != '\n' && c != -1 && c != ' ') { str += c; scanf("%c", &c); } } void scanc(char& str) { char c; scanf("%c", &c); if (c == -1)return; while (c == '\n') { scanf("%c", &c); } str = c; } double acot(double x) { return PI / 2 - atan(x); } ll LSB(ll n) { return (n & (-n)); } template<typename T> inline T chmin(T& a, const T& b) { if (a > b)a = b; return a; } template<typename T> inline T chmax(T& a, const T& b) { if (a < b)a = b; return a; } //cpp_int #if __has_include(<boost/multiprecision/cpp_int.hpp>) #include <boost/multiprecision/cpp_int.hpp> #include <boost/multiprecision/cpp_dec_float.hpp> using namespace boost::multiprecision; #else using cpp_int = ll; #endif //atcoder library #if __has_include(<atcoder/all>) #include <atcoder/all> //using namespace atcoder; #endif /* random_device seed_gen; mt19937 engine(seed_gen()); uniform_int_distribution dist(1, 100); */ /*----------------------------------------------------------------------------------*/ /** * @brief Kth Root Integer * @docs docs/kth-root-integer.md */ uint64_t kth_root_integer(uint64_t a, int k) { if(k == 1) return a; auto check = [&](uint32_t x) { uint64_t mul = 1; for(int j = 0; j < k; j++) { if(__builtin_mul_overflow(mul, x, &mul)) return false; } return mul <= a; }; uint64_t ret = 0; for(int i = 31; i >= 0; i--) { if(check(ret | (1u << i))) ret |= 1u << i; } return ret; } /** * @brief Prime Table(素数テーブル) * @docs docs/prime-table.md */ vector< bool > prime_table(int n) { vector< bool > prime(n + 1, true); if(n >= 0) prime[0] = false; if(n >= 1) prime[1] = false; for(int i = 2; i * i <= n; i++) { if(!prime[i]) continue; for(int j = i * i; j <= n; j += i) { prime[j] = false; } } return prime; } /** * @brief Prime Count(素数の個数) */ template< int64_t LIM = 100000000000LL > struct PrimeCount { private: int64_t sq; vector< bool > prime; vector< int64_t > prime_sum, primes; int64_t p2(int64_t x, int64_t y) { if(x < 4) return 0; int64_t a = pi(y); int64_t b = pi(kth_root_integer(x, 2)); if(a >= b) return 0; int64_t sum = (a - 2) * (a + 1) / 2 - (b - 2) * (b + 1) / 2; for(int64_t i = a; i < b; i++) sum += pi(x / primes[i]); return sum; } int64_t phi(int64_t m, int64_t n) { if(m < 1) return 0; if(n > m) return 1; if(n < 1) return m; if(m <= primes[n - 1] * primes[n - 1]) return pi(m) - n + 1; if(m <= primes[n - 1] * primes[n - 1] * primes[n - 1] && m <= sq) { int64_t sx = pi(kth_root_integer(m, 2)); int64_t ans = pi(m) - (sx + n - 2) * (sx - n + 1) / 2; for(int64_t i = n; i < sx; ++i) ans += pi(m / primes[i]); return ans; } return phi(m, n - 1) - phi(m / primes[n - 1], n - 1); } public: PrimeCount() : sq(kth_root_integer(LIM, 2)), prime_sum(sq + 1) { prime = prime_table(sq); for(int i = 1; i <= sq; i++) prime_sum[i] = prime_sum[i - 1] + prime[i]; primes.reserve(prime_sum[sq]); for(int i = 1; i <= sq; i++) if(prime[i]) primes.push_back(i); } int64_t pi(int64_t n) { if(n <= sq) return prime_sum[n]; int64_t m = kth_root_integer(n, 3); int64_t a = pi(m); return phi(n, a) + a - 1 - p2(n, m); } }; // https://ei1333.github.io/library/ うしさん いつもありがとうございます int main() { ll l, r; scanf("%lld%lld", &l, &r); PrimeCount<> pc; ll ans = 0; if(l == r){ ans = pc.pi(r) - pc.pi(l - 1); } else{ ans += pc.pi(r) - pc.pi(l - 1); ans += pc.pi(r * 2 - 1) - pc.pi(l * 2); } printf("%lld\n", ans); Please AC; }