結果

問題 No.1661 Sum is Prime (Hard Version)
ユーザー nullnull
提出日時 2021-08-27 22:20:23
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 392 ms / 3,000 ms
コード長 5,768 bytes
コンパイル時間 8,083 ms
コンパイル使用メモリ 477,592 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-11-21 03:09:23
合計ジャッジ時間 11,734 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 11 ms
6,816 KB
testcase_01 AC 11 ms
6,820 KB
testcase_02 AC 232 ms
6,816 KB
testcase_03 AC 11 ms
6,816 KB
testcase_04 AC 10 ms
6,816 KB
testcase_05 AC 11 ms
6,816 KB
testcase_06 AC 11 ms
6,820 KB
testcase_07 AC 11 ms
6,820 KB
testcase_08 AC 11 ms
6,816 KB
testcase_09 AC 11 ms
6,816 KB
testcase_10 AC 11 ms
6,820 KB
testcase_11 AC 11 ms
6,820 KB
testcase_12 AC 186 ms
6,816 KB
testcase_13 AC 181 ms
6,820 KB
testcase_14 AC 209 ms
6,816 KB
testcase_15 AC 299 ms
6,816 KB
testcase_16 AC 238 ms
6,820 KB
testcase_17 AC 215 ms
6,816 KB
testcase_18 AC 78 ms
6,816 KB
testcase_19 AC 139 ms
6,816 KB
testcase_20 AC 80 ms
6,816 KB
testcase_21 AC 211 ms
6,820 KB
testcase_22 AC 145 ms
6,820 KB
testcase_23 AC 392 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/*
このコード、と~おれ!
Be accepted!
∧_∧ 
(。・ω・。)つ━☆・*。
⊂   ノ    ・゜+.
 しーJ   °。+ *´¨)
          .· ´¸.·*´¨) ¸.·*¨)
		            (¸.·´ (¸.·'* ☆
*/

#include <cstdio>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstring>
#include <vector>
#include <numeric>
#include <iostream>
#include <random>
#include <map>
#include <unordered_map>
#include <queue>
#include <regex>
#include <functional>
#include <complex>
#include <list>
#include <cassert>
#include <iomanip>
#include <set>
#include <stack>
#include <bitset>
#include <array>
#include <chrono>

//#pragma GCC target("arch=skylake-avx512")
#pragma GCC target("avx2")
//#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC target("sse4")
#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#define repeat(i, n, m) for(int i = n; i < (m); ++i)
#define rep(i, n) for(int i = 0; i < (n); ++i)
#define printynl(a) printf(a ? "yes\n" : "no\n")
#define printyn(a) printf(a ? "Yes\n" : "No\n")
#define printYN(a) printf(a ? "YES\n" : "NO\n")
#define printim(a) printf(a ? "possible\n" : "imposible\n")
#define printdb(a) printf("%.50lf\n", a)
#define printLdb(a) printf("%.50Lf\n", a)
#define printdbd(a) printf("%.16lf\n", a)
#define prints(s) printf("%s\n", s.c_str())
#define all(x) (x).begin(), (x).end()
#define deg_to_rad(deg) (((deg)/360.0L)*2.0L*PI)
#define rad_to_deg(rad) (((rad)/2.0L/PI)*360.0L)
#define Please return
#define AC 0
#define manhattan_dist(a, b, c, d) (abs(a - c) + abs(b - d))

using ll = long long;
using ull = unsigned long long;

constexpr int INF = 1073741823;
constexpr int MINF = -1073741823;
constexpr ll LINF = ll(4661686018427387903);
constexpr ll MOD = 1e9 + 7;
constexpr ll mod = 998244353;
constexpr long double eps = 1e-6;
const long double PI = acosl(-1.0L);

using namespace std;

void scans(string& str) {
	char c;
	str = "";
	scanf("%c", &c);
	if (c == '\n')scanf("%c", &c);
	while (c != '\n' && c != -1 && c != ' ') {
		str += c;
		scanf("%c", &c);
	}
}

void scanc(char& str) {
	char c;
	scanf("%c", &c);
	if (c == -1)return;
	while (c == '\n') {
		scanf("%c", &c);
	}
	str = c;
}

double acot(double x) {
	return PI / 2 - atan(x);
}

ll LSB(ll n) { return (n & (-n)); }

template<typename T>
inline T chmin(T& a, const T& b) {
	if (a > b)a = b;
	return a;
}

template<typename T>
inline T chmax(T& a, const T& b) {
	if (a < b)a = b;
	return a;
}

//cpp_int
#if __has_include(<boost/multiprecision/cpp_int.hpp>)
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using namespace boost::multiprecision;
#else
using cpp_int = ll;
#endif

//atcoder library
#if __has_include(<atcoder/all>)
#include <atcoder/all>
//using namespace atcoder;
#endif

/*
	random_device seed_gen;
	mt19937 engine(seed_gen());
	uniform_int_distribution dist(1, 100);
*/


/*----------------------------------------------------------------------------------*/

/**
 * @brief Kth Root Integer
 * @docs docs/kth-root-integer.md
 */
uint64_t kth_root_integer(uint64_t a, int k) {
  if(k == 1) return a;
  auto check = [&](uint32_t x) {
    uint64_t mul = 1;
    for(int j = 0; j < k; j++) {
      if(__builtin_mul_overflow(mul, x, &mul)) return false;
    }
    return mul <= a;
  };
  uint64_t ret = 0;
  for(int i = 31; i >= 0; i--) {
    if(check(ret | (1u << i))) ret |= 1u << i;
  }
  return ret;
}

/**
 * @brief Prime Table(素数テーブル)
 * @docs docs/prime-table.md
 */
vector< bool > prime_table(int n) {
  vector< bool > prime(n + 1, true);
  if(n >= 0) prime[0] = false;
  if(n >= 1) prime[1] = false;
  for(int i = 2; i * i <= n; i++) {
    if(!prime[i]) continue;
    for(int j = i * i; j <= n; j += i) {
      prime[j] = false;
    }
  }
  return prime;
}

/**
 * @brief Prime Count(素数の個数)
 */
template< int64_t LIM = 100000000000LL >
struct PrimeCount {
private:
  int64_t sq;
  vector< bool > prime;
  vector< int64_t > prime_sum, primes;

  int64_t p2(int64_t x, int64_t y) {
    if(x < 4) return 0;
    int64_t a = pi(y);
    int64_t b = pi(kth_root_integer(x, 2));
    if(a >= b) return 0;
    int64_t sum = (a - 2) * (a + 1) / 2 - (b - 2) * (b + 1) / 2;
    for(int64_t i = a; i < b; i++) sum += pi(x / primes[i]);
    return sum;
  }

  int64_t phi(int64_t m, int64_t n) {
    if(m < 1) return 0;
    if(n > m) return 1;
    if(n < 1) return m;
    if(m <= primes[n - 1] * primes[n - 1]) return pi(m) - n + 1;
    if(m <= primes[n - 1] * primes[n - 1] * primes[n - 1] && m <= sq) {
      int64_t sx = pi(kth_root_integer(m, 2));
      int64_t ans = pi(m) - (sx + n - 2) * (sx - n + 1) / 2;
      for(int64_t i = n; i < sx; ++i) ans += pi(m / primes[i]);
      return ans;
    }
    return phi(m, n - 1) - phi(m / primes[n - 1], n - 1);
  }

public:

  PrimeCount() : sq(kth_root_integer(LIM, 2)), prime_sum(sq + 1) {
    prime = prime_table(sq);
    for(int i = 1; i <= sq; i++) prime_sum[i] = prime_sum[i - 1] + prime[i];
    primes.reserve(prime_sum[sq]);
    for(int i = 1; i <= sq; i++) if(prime[i]) primes.push_back(i);
  }

  int64_t pi(int64_t n) {
    if(n <= sq) return prime_sum[n];
    int64_t m = kth_root_integer(n, 3);
    int64_t a = pi(m);
    return phi(n, a) + a - 1 - p2(n, m);
  }
};

// https://ei1333.github.io/library/ うしさん いつもありがとうございます

int main() {

    ll l, r;
    scanf("%lld%lld", &l, &r);
    PrimeCount<> pc;
    ll ans = 0;
    if(l == r){
        ans = pc.pi(r) - pc.pi(l - 1);
    } else{
        ans += pc.pi(r) - pc.pi(l - 1);
        ans += pc.pi(r * 2 - 1) - pc.pi(l * 2);
    }
    printf("%lld\n", ans);

	Please AC;
}
0