結果
| 問題 |
No.1661 Sum is Prime (Hard Version)
|
| コンテスト | |
| ユーザー |
Kude
|
| 提出日時 | 2021-08-27 22:28:39 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 351 ms / 3,000 ms |
| コード長 | 2,987 bytes |
| コンパイル時間 | 4,048 ms |
| コンパイル使用メモリ | 255,432 KB |
| 最終ジャッジ日時 | 2025-01-24 03:20:52 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 22 |
ソースコード
#include<bits/stdc++.h>
#include<atcoder/all>
using namespace std;
using namespace atcoder;
#define rep(i,n)for (int i = 0; i < int(n); ++i)
#define rrep(i,n)for (int i = int(n)-1; i >= 0; --i)
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
template<class T> void chmax(T& a, const T& b) {a = max(a, b);}
template<class T> void chmin(T& a, const T& b) {a = min(a, b);}
using ll = long long;
using P = pair<int,int>;
using VI = vector<int>;
using VVI = vector<VI>;
using VL = vector<ll>;
using VVL = vector<VL>;
/**
* @brief Prime Table(素数テーブル)
* @docs docs/prime-table.md
*/
vector< bool > prime_table(int n) {
vector< bool > prime(n + 1, true);
if(n >= 0) prime[0] = false;
if(n >= 1) prime[1] = false;
for(int i = 2; i * i <= n; i++) {
if(!prime[i]) continue;
for(int j = i * i; j <= n; j += i) {
prime[j] = false;
}
}
return prime;
}
uint64_t kth_root_integer(uint64_t a, int k) {
if(k == 1) return a;
auto check = [&](uint32_t x) {
uint64_t mul = 1;
for(int j = 0; j < k; j++) {
if(__builtin_mul_overflow(mul, x, &mul)) return false;
}
return mul <= a;
};
uint64_t ret = 0;
for(int i = 31; i >= 0; i--) {
if(check(ret | (1u << i))) ret |= 1u << i;
}
return ret;
}
/**
* @brief Prime Count(素数の個数)
*/
template< int64_t LIM = 100000000000LL >
struct PrimeCount {
private:
int64_t sq;
vector< bool > prime;
vector< int64_t > prime_sum, primes;
int64_t p2(int64_t x, int64_t y) {
if(x < 4) return 0;
int64_t a = pi(y);
int64_t b = pi(kth_root_integer(x, 2));
if(a >= b) return 0;
int64_t sum = (a - 2) * (a + 1) / 2 - (b - 2) * (b + 1) / 2;
for(int64_t i = a; i < b; i++) sum += pi(x / primes[i]);
return sum;
}
int64_t phi(int64_t m, int64_t n) {
if(m < 1) return 0;
if(n > m) return 1;
if(n < 1) return m;
if(m <= primes[n - 1] * primes[n - 1]) return pi(m) - n + 1;
if(m <= primes[n - 1] * primes[n - 1] * primes[n - 1] && m <= sq) {
int64_t sx = pi(kth_root_integer(m, 2));
int64_t ans = pi(m) - (sx + n - 2) * (sx - n + 1) / 2;
for(int64_t i = n; i < sx; ++i) ans += pi(m / primes[i]);
return ans;
}
return phi(m, n - 1) - phi(m / primes[n - 1], n - 1);
}
public:
PrimeCount() : sq(kth_root_integer(LIM, 2)), prime_sum(sq + 1) {
prime = prime_table(sq);
for(int i = 1; i <= sq; i++) prime_sum[i] = prime_sum[i - 1] + prime[i];
primes.reserve(prime_sum[sq]);
for(int i = 1; i <= sq; i++) if(prime[i]) primes.push_back(i);
}
int64_t pi(int64_t n) {
if(n <= sq) return prime_sum[n];
int64_t m = kth_root_integer(n, 3);
int64_t a = pi(m);
return phi(n, a) + a - 1 - p2(n, m);
}
};
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
PrimeCount pc;
ll l, r;
cin >> l >> r;
ll ans = pc.pi(r) - pc.pi(l - 1) + (l < r ? pc.pi(2 * (r - 1) + 1) - pc.pi(2 * l) : 0);
cout << ans << endl;
}
Kude