結果
問題 | No.1661 Sum is Prime (Hard Version) |
ユーザー | to-omer |
提出日時 | 2021-08-27 22:33:43 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 31 ms / 3,000 ms |
コード長 | 2,655 bytes |
コンパイル時間 | 688 ms |
コンパイル使用メモリ | 82,936 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-11-21 03:35:44 |
合計ジャッジ時間 | 1,613 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | AC | 20 ms
6,816 KB |
testcase_03 | AC | 1 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,820 KB |
testcase_05 | AC | 2 ms
6,820 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 2 ms
6,816 KB |
testcase_09 | AC | 1 ms
6,816 KB |
testcase_10 | AC | 1 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,816 KB |
testcase_12 | AC | 17 ms
6,816 KB |
testcase_13 | AC | 17 ms
6,820 KB |
testcase_14 | AC | 20 ms
6,816 KB |
testcase_15 | AC | 24 ms
6,816 KB |
testcase_16 | AC | 21 ms
6,820 KB |
testcase_17 | AC | 19 ms
6,816 KB |
testcase_18 | AC | 9 ms
6,816 KB |
testcase_19 | AC | 14 ms
6,816 KB |
testcase_20 | AC | 10 ms
6,816 KB |
testcase_21 | AC | 17 ms
6,820 KB |
testcase_22 | AC | 30 ms
6,820 KB |
testcase_23 | AC | 31 ms
6,820 KB |
ソースコード
// https://old.yosupo.jp/submission/53928 #include <cassert> #include <cmath> #include <cstdio> #include <vector> using namespace std; using i64 = long long; int isqrt(i64 n) { return sqrtl(n); } __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) i64 prime_pi(const i64 N) { if (N <= 1) return 0; if (N == 2) return 1; const int v = isqrt(N); int s = (v + 1) / 2; vector<int> smalls(s); for (int i = 1; i < s; ++i) smalls[i] = i; vector<int> roughs(s); for (int i = 0; i < s; ++i) roughs[i] = 2 * i + 1; vector<i64> larges(s); for (int i = 0; i < s; ++i) larges[i] = (N / (2 * i + 1) - 1) / 2; vector<bool> skip(v + 1); const auto divide = [](i64 n, i64 d) -> int { return double(n) / d; }; const auto half = [](int n) -> int { return (n - 1) >> 1; }; int pc = 0; for (int p = 3; p <= v; p += 2) if (!skip[p]) { int q = p * p; if (i64(q) * q > N) break; skip[p] = true; for (int i = q; i <= v; i += 2 * p) skip[i] = true; int ns = 0; for (int k = 0; k < s; ++k) { int i = roughs[k]; if (skip[i]) continue; i64 d = i64(i) * p; larges[ns] = larges[k] - (d <= v ? larges[smalls[d >> 1] - pc] : smalls[half(divide(N, d))]) + pc; roughs[ns++] = i; } s = ns; for (int i = half(v), j = ((v / p) - 1) | 1; j >= p; j -= 2) { int c = smalls[j >> 1] - pc; for (int e = (j * p) >> 1; i >= e; --i) smalls[i] -= c; } ++pc; } larges[0] += i64(s + 2 * (pc - 1)) * (s - 1) / 2; for (int k = 1; k < s; ++k) larges[0] -= larges[k]; for (int l = 1; l < s; ++l) { int q = roughs[l]; i64 M = N / q; int e = smalls[half(M / q)] - pc; if (e < l + 1) break; i64 t = 0; for (int k = l + 1; k <= e; ++k) t += smalls[half(divide(M, roughs[k]))]; larges[0] += t - i64(e - l) * (pc + l - 1); } return larges[0] + 1; } // int main() { // i64 N; // while (~scanf("%lld", &N)) { // printf("%lld\n", prime_pi(N)); // } // } // ================================================================================ int main() { i64 l, r; scanf("%lld %lld", &l, &r); i64 ans = prime_pi(r) - prime_pi(l - 1); i64 x = prime_pi(r + r - 1); i64 y = prime_pi(l + l - 1); ans += x - (x >= 2); ans -= y - (y >= 2); printf("%lld\n", ans); }