結果
| 問題 |
No.1661 Sum is Prime (Hard Version)
|
| コンテスト | |
| ユーザー |
tamato
|
| 提出日時 | 2021-08-27 23:15:58 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,988 bytes |
| コンパイル時間 | 260 ms |
| コンパイル使用メモリ | 81,920 KB |
| 実行使用メモリ | 87,040 KB |
| 最終ジャッジ日時 | 2024-12-30 16:53:47 |
| 合計ジャッジ時間 | 9,832 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 WA * 2 |
| other | AC * 10 WA * 12 |
ソースコード
def count_primes(n):
r = int(n ** 0.5)
assert r * r <= n and (r + 1) ** 2 > n
V = [0] + [n // i for i in range(1, r + 1)]
V += list(range(V[-1] - 1, 0, -1))
S = [i - 1 for i in V]
for p in range(2, r + 1):
if S[-p] > S[-p + 1]:
sp = S[-p + 1]
p2 = p * p
for i in range(1, 2 * r + 1):
v = V[i]
if v < p2:
break
S[i] -= (S[-(v // p) if v // p <= r else i * p] - sp)
return S[1]
def faster_count_primes(n):
v = int(n ** 0.5)
higher = [0] * (v + 2)
lower = [0] * (v + 2)
used = [False] * (v + 2)
result = n - 1
for p in range(2, v + 1):
lower[p] = p - 1
higher[p] = n // p - 1
for p in range(2, v + 1):
if lower[p] == lower[p - 1]:
continue
temp = lower[p - 1]
result -= higher[p] - temp
pxp = p * p
end = min(v, n // pxp)
j = 1 + (p & 1)
for i in range(p + j, end + 2, j):
if used[i]:
continue
d = i * p
if d <= v:
higher[i] -= higher[d] - temp
else:
higher[i] -= lower[n // d] - temp
for i in range(v, pxp - 1, -1):
lower[i] -= lower[i // p] - temp
for i in range(pxp, end + 1, p * j):
used[i] = True
return result
def fastest_count_primes(n):
if n < 2:
return 0
v = int(n ** 0.5) + 1
smalls = [i // 2 for i in range(1, v + 1)]
smalls[1] = 0
s = v // 2
roughs = [2 * i + 1 for i in range(s)]
larges = [(n // (2 * i + 1) + 1) // 2 for i in range(s)]
skip = [False] * v
pc = 0
for p in range(3, v):
if smalls[p] <= smalls[p - 1]:
continue
q = p * p
pc += 1
if q * q > n:
break
skip[p] = True
for i in range(q, v, 2 * p):
skip[i] = True
ns = 0
for k in range(s):
i = roughs[k]
if skip[i]:
continue
d = i * p
larges[ns] = larges[k] - (larges[smalls[d] - pc] if d < v else smalls[n // d]) + pc
roughs[ns] = i
ns += 1
s = ns
for j in range((v - 1) // p, p - 1, -1):
c = smalls[j] - pc
e = min((j + 1) * p, v)
for i in range(j * p, e):
smalls[i] -= c
for k in range(1, s):
m = n // roughs[k]
s = larges[k] - (pc + k - 1)
for l in range(1, k):
p = roughs[l]
if p * p > m:
break
s -= smalls[m // p] - (pc + l - 1)
larges[0] -= s
return larges[0]
L, R = map(int, input().split())
if R == 1:
print(0)
exit()
pi = faster_count_primes
if L == 1:
print(pi(2 * R - 1))
exit()
if 2 * L + 1 > R:
ans = pi(R) - pi(L-1) + pi(2*R-1) - pi(2*L)
else:
ans = pi(2*R-1) - pi(L-1)
print(ans)
tamato