結果
| 問題 |
No.1661 Sum is Prime (Hard Version)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-08-27 23:16:36 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,960 bytes |
| コンパイル時間 | 14,923 ms |
| コンパイル使用メモリ | 378,176 KB |
| 実行使用メモリ | 5,332 KB |
| 最終ジャッジ日時 | 2024-12-30 16:54:22 |
| 合計ジャッジ時間 | 31,688 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 WA * 1 |
| other | AC * 21 WA * 1 |
ソースコード
use std::cmp::*;
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => (read_value!($next, usize) - 1);
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
read_value!($next, [$t; len])
}};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
trait Change { fn chmax(&mut self, x: Self); fn chmin(&mut self, x: Self); }
impl<T: PartialOrd> Change for T {
fn chmax(&mut self, x: T) { if *self < x { *self = x; } }
fn chmin(&mut self, x: T) { if *self > x { *self = x; } }
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}
struct DivDP {
// stores dp[n], dp[n/2], ..., dp[n/b].
dp_big: Vec<i64>,
dp: Vec<i64>,
n: i64,
b: i64,
}
impl DivDP {
fn new(n: i64, b: i64) -> Self {
let dp_big = vec![0; b as usize + 1];
let dp = vec![0; (n / b) as usize];
DivDP {
dp_big: dp_big,
dp: dp,
n: n,
b: b,
}
}
// pos should be of form floor(n / ???).
fn upd<F>(&mut self, pos: i64, f: F) where F: Fn(i64) -> i64 {
if pos >= self.n / self.b {
let idx = self.n / pos;
debug_assert_eq!(pos, self.n / idx);
self.dp_big[idx as usize] = f(self.dp_big[idx as usize]);
return;
}
let idx = pos as usize;
self.dp[idx] = f(self.dp[idx]);
}
fn get(&self, pos: i64) -> i64 {
if pos >= self.n / self.b {
let idx = self.n / pos;
debug_assert_eq!(pos, self.n / idx);
return self.dp_big[idx as usize];
}
let idx = pos as usize;
self.dp[idx]
}
fn init<F>(&mut self, f: F) where F: Fn(i64) -> i64 {
for i in 0..self.dp.len() {
self.dp[i] = f(i as i64);
}
for i in (1..self.dp_big.len()).rev() {
self.dp_big[i] = f(self.n / i as i64);
}
}
#[allow(unused)]
fn upd_all<F>(&mut self, f: F) where F: Fn(i64, i64) -> i64 {
for i in 0..self.dp.len() {
self.dp[i] = f(i as i64, self.dp[i]);
}
for i in (1..self.dp_big.len()).rev() {
self.dp_big[i] = f(self.n / i as i64, self.dp_big[i]);
}
}
}
impl std::fmt::Debug for DivDP {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
for i in 0..self.dp.len() {
writeln!(f, "{}: {}", i, self.dp[i])?;
}
for i in (1..self.dp_big.len()).rev() {
writeln!(f, "{}: {}", self.n / i as i64, self.dp_big[i])?;
}
Ok(())
}
}
fn primes(v: usize) -> Vec<usize> {
let mut pr = vec![true; v + 1];
pr[0] = false;
pr[1] = false;
for i in 2..v + 1 {
if !pr[i] {
continue;
}
for j in 2..v / i + 1 {
pr[i * j] = false;
}
}
let prs: Vec<_> = (0..v + 1).filter(|&i| pr[i]).collect();
prs
}
fn pi(n: i64) -> i64 {
if n <= 1 {
return 0;
}
let mut sqn = 0;
while sqn * sqn <= n {
sqn += 1;
}
sqn -= 1;
let prs = primes(sqn as usize + 1);
let mut dp = DivDP::new(n, sqn);
dp.init(|x| max(0, x - 1));
for &p in &prs {
let p = p as i64;
for i in 1..=min(sqn, n / p / p) {
let val = dp.get(n / i / p);
let val = val - dp.get(p - 1);
dp.upd(n / i, |x| x - val);
}
for i in (p * p..n / sqn).rev() {
let val = dp.get(i / p);
let val = val - dp.get(p - 1);
dp.upd(i, |x| x - val);
}
}
// dp[j] = #{x <= j | x is prime}
dp.get(n)
}
fn solve() {
input!(l: i64, r: i64);
println!("{}", pi(r) - pi(l - 1) + pi(2 * r - 1) - pi(2 * l - 1));
}