結果
問題 | No.1660 Matrix Exponentiation |
ユーザー | hitonanode |
提出日時 | 2021-08-28 00:02:53 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 161 ms / 2,000 ms |
コード長 | 16,279 bytes |
コンパイル時間 | 2,193 ms |
コンパイル使用メモリ | 189,868 KB |
実行使用メモリ | 27,816 KB |
最終ジャッジ日時 | 2024-11-21 05:59:41 |
合計ジャッジ時間 | 4,136 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,820 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 2 ms
6,820 KB |
testcase_09 | AC | 14 ms
14,184 KB |
testcase_10 | AC | 14 ms
14,188 KB |
testcase_11 | AC | 7 ms
11,008 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 2 ms
6,816 KB |
testcase_14 | AC | 2 ms
6,820 KB |
testcase_15 | AC | 2 ms
6,816 KB |
testcase_16 | AC | 2 ms
6,816 KB |
testcase_17 | AC | 2 ms
6,820 KB |
testcase_18 | AC | 2 ms
6,816 KB |
testcase_19 | AC | 73 ms
14,824 KB |
testcase_20 | AC | 51 ms
13,924 KB |
testcase_21 | AC | 51 ms
9,216 KB |
testcase_22 | AC | 12 ms
10,192 KB |
testcase_23 | AC | 31 ms
11,200 KB |
testcase_24 | AC | 160 ms
27,816 KB |
testcase_25 | AC | 51 ms
17,780 KB |
testcase_26 | AC | 161 ms
27,748 KB |
testcase_27 | AC | 8 ms
11,136 KB |
testcase_28 | AC | 93 ms
18,588 KB |
testcase_29 | AC | 136 ms
27,772 KB |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T, typename V> void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); } template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); } template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); } template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } #if __cplusplus >= 201703L template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } #endif template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; } template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl #define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr) #else #define dbg(x) (x) #define dbgif(cond, x) 0 #endif // Directed graph library to find strongly connected components (強連結成分分解) // 0-indexed directed graph // Complexity: O(V + E) struct DirectedGraphSCC { int V; // # of Vertices std::vector<std::vector<int>> to, from; std::vector<int> used; // Only true/false std::vector<int> vs; std::vector<int> cmp; int scc_num = -1; DirectedGraphSCC(int V = 0) : V(V), to(V), from(V), cmp(V) {} void _dfs(int v) { used[v] = true; for (auto t : to[v]) if (!used[t]) _dfs(t); vs.push_back(v); } void _rdfs(int v, int k) { used[v] = true; cmp[v] = k; for (auto t : from[v]) if (!used[t]) _rdfs(t, k); } void add_edge(int from_, int to_) { assert(from_ >= 0 and from_ < V and to_ >= 0 and to_ < V); to[from_].push_back(to_); from[to_].push_back(from_); } // Detect strongly connected components and return # of them. // Also, assign each vertex `v` the scc id `cmp[v]` (0-indexed) int FindStronglyConnectedComponents() { used.assign(V, false); vs.clear(); for (int v = 0; v < V; v++) if (!used[v]) _dfs(v); used.assign(V, false); scc_num = 0; for (int i = (int)vs.size() - 1; i >= 0; i--) if (!used[vs[i]]) _rdfs(vs[i], scc_num++); return scc_num; } // Find and output the vertices that form a closed cycle. // output: {v_1, ..., v_C}, where C is the length of cycle, // {} if there's NO cycle (graph is DAG) int _c, _init; std::vector<int> _ret_cycle; bool _dfs_detectcycle(int now, bool b0) { if (now == _init and b0) return true; for (auto nxt : to[now]) if (cmp[nxt] == _c and !used[nxt]) { _ret_cycle.emplace_back(nxt), used[nxt] = 1; if (_dfs_detectcycle(nxt, true)) return true; _ret_cycle.pop_back(); } return false; } std::vector<int> DetectCycle() { int ns = FindStronglyConnectedComponents(); if (ns == V) return {}; std::vector<int> cnt(ns); for (auto x : cmp) cnt[x]++; _c = std::find_if(cnt.begin(), cnt.end(), [](int x) { return x > 1; }) - cnt.begin(); _init = std::find(cmp.begin(), cmp.end(), _c) - cmp.begin(); used.assign(V, false); _ret_cycle.clear(); _dfs_detectcycle(_init, false); return _ret_cycle; } // After calling `FindStronglyConnectedComponents()`, generate a new graph by uniting all vertices // belonging to the same component(The resultant graph is DAG). DirectedGraphSCC GenerateTopologicalGraph() { DirectedGraphSCC newgraph(scc_num); for (int s = 0; s < V; s++) for (auto t : to[s]) { if (cmp[s] != cmp[t]) newgraph.add_edge(cmp[s], cmp[t]); } return newgraph; } }; template <typename T, T INF = std::numeric_limits<T>::max() / 2, int INVALID = -1> struct ShortestPath { int V, E; bool single_positive_weight; T wmin, wmax; std::vector<std::vector<std::pair<int, T>>> to; ShortestPath(int V = 0) : V(V), E(0), single_positive_weight(true), wmin(0), wmax(0), to(V) {} void add_edge(int s, int t, T w) { assert(0 <= s and s < V); assert(0 <= t and t < V); to[s].emplace_back(t, w); E++; if (w > 0 and wmax > 0 and wmax != w) single_positive_weight = false; wmin = std::min(wmin, w); wmax = std::max(wmax, w); } std::vector<T> dist; std::vector<int> prev; // Dijkstra algorithm // Complexity: O(E log E) void Dijkstra(int s) { assert(0 <= s and s < V); dist.assign(V, INF); dist[s] = 0; prev.assign(V, INVALID); using P = std::pair<T, int>; std::priority_queue<P, std::vector<P>, std::greater<P>> pq; pq.emplace(0, s); while (!pq.empty()) { T d; int v; std::tie(d, v) = pq.top(); pq.pop(); if (dist[v] < d) continue; for (auto nx : to[v]) { T dnx = d + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; pq.emplace(dnx, nx.first); } } } } // Dijkstra algorithm, O(V^2 + E) void DijkstraVquad(int s) { assert(0 <= s and s < V); dist.assign(V, INF); dist[s] = 0; prev.assign(V, INVALID); std::vector<char> fixed(V, false); while (true) { int r = INVALID; T dr = INF; for (int i = 0; i < V; i++) { if (!fixed[i] and dist[i] < dr) r = i, dr = dist[i]; } if (r == INVALID) break; fixed[r] = true; int nxt; T dx; for (auto p : to[r]) { std::tie(nxt, dx) = p; if (dist[nxt] > dist[r] + dx) dist[nxt] = dist[r] + dx, prev[nxt] = r; } } } // Bellman-Ford algorithm // Complexity: O(VE) bool BellmanFord(int s, int nb_loop) { assert(0 <= s and s < V); dist.assign(V, INF), prev.assign(V, INVALID); dist[s] = 0; for (int l = 0; l < nb_loop; l++) { bool upd = false; for (int v = 0; v < V; v++) { if (dist[v] == INF) continue; for (auto nx : to[v]) { T dnx = dist[v] + nx.second; if (dist[nx.first] > dnx) dist[nx.first] = dnx, prev[nx.first] = v, upd = true; } } if (!upd) return true; } return false; } // Bellman-ford algorithm using queue (deque) // Complexity: O(VE) // Requirement: no negative loop void SPFA(int s) { assert(0 <= s and s < V); dist.assign(V, INF); prev.assign(V, INVALID); std::deque<int> q; std::vector<char> in_queue(V); dist[s] = 0; q.push_back(s), in_queue[s] = 1; while (!q.empty()) { int now = q.front(); q.pop_front(), in_queue[now] = 0; for (auto nx : to[now]) { T dnx = dist[now] + nx.second; int nxt = nx.first; if (dist[nxt] > dnx) { dist[nxt] = dnx; if (!in_queue[nxt]) { if (q.size() and dnx < dist[q.front()]) { // Small label first optimization q.push_front(nxt); } else { q.push_back(nxt); } prev[nxt] = now, in_queue[nxt] = 1; } } } } } void ZeroOneBFS(int s) { assert(0 <= s and s < V); dist.assign(V, INF), prev.assign(V, INVALID); dist[s] = 0; std::deque<int> que; que.push_back(s); while (!que.empty()) { int v = que.front(); que.pop_front(); for (auto nx : to[v]) { T dnx = dist[v] + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; if (nx.second) { que.push_back(nx.first); } else { que.push_front(nx.first); } } } } } void dag_solver(int s) { assert(0 <= s and s < V); std::vector<int> indeg(V, 0); std::queue<int> que; que.push(s); while (que.size()) { int now = que.front(); que.pop(); for (auto nx : to[now]) { indeg[nx.first]++; if (indeg[nx.first] == 1) que.push(nx.first); } } dist.assign(V, INF), prev.assign(V, INVALID); dist[s] = 0; que.push(s); while (que.size()) { int now = que.front(); que.pop(); for (auto nx : to[now]) { indeg[nx.first]--; if (dist[nx.first] > dist[now] + nx.second) dist[nx.first] = dist[now] + nx.second, prev[nx.first] = now; if (indeg[nx.first] == 0) que.push(nx.first); } } } // Retrieve a sequence of vertex ids that represents shortest path [s, ..., goal] // If not reachable to goal, return {} std::vector<int> retrieve_path(int goal) const { assert(int(prev.size()) == V); assert(0 <= goal and goal < V); if (dist[goal] == INF) return {}; std::vector<int> ret{goal}; while (prev[goal] != INVALID) { goal = prev[goal]; ret.push_back(goal); } std::reverse(ret.begin(), ret.end()); return ret; } void solve(int s) { if (wmin >= 0) { if (single_positive_weight) { ZeroOneBFS(s); } else { if ((long long)V * V < (E << 4)) { DijkstraVquad(s); } else { Dijkstra(s); } } } else { BellmanFord(s, V); } } // Warshall-Floyd algorithm // Complexity: O(E + V^3) std::vector<std::vector<T>> dist2d; void WarshallFloyd() { dist2d.assign(V, std::vector<T>(V, INF)); for (int i = 0; i < V; i++) { dist2d[i][i] = 0; for (auto p : to[i]) dist2d[i][p.first] = std::min(dist2d[i][p.first], p.second); } for (int k = 0; k < V; k++) { for (int i = 0; i < V; i++) { if (dist2d[i][k] == INF) continue; for (int j = 0; j < V; j++) { if (dist2d[k][j] == INF) continue; dist2d[i][j] = std::min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]); } } } } void dump_graphviz(std::string filename = "shortest_path") const { std::ofstream ss(filename + ".DOT"); ss << "digraph{\n"; for (int i = 0; i < V; i++) { for (const auto &e : to[i]) ss << i << "->" << e.first << "[label=" << e.second << "];\n"; } ss << "}\n"; ss.close(); return; } }; int main() { int N, K; cin >> N >> K; vector<int> indeg(N); DirectedGraphSCC graph(N); ShortestPath<int> sssp(N + 1); REP(i, K) { int r, c; cin >> r >> c; if (r == c) { puts("-1"); return 0; } r--, c--; indeg[c]++; graph.add_edge(r, c); sssp.add_edge(r, c, -1); } REP(i, N) if (!indeg[i]) sssp.add_edge(N, i, -1); if (graph.FindStronglyConnectedComponents() < N) { puts("-1"); return 0; } sssp.dag_solver(N); cout << -(*min_element(ALL(sssp.dist))) << '\n'; }