結果

問題 No.1657 Sum is Prime (Easy Version)
ユーザー stoqstoq
提出日時 2021-08-31 09:09:00
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 41 ms / 2,000 ms
コード長 5,046 bytes
コンパイル時間 4,489 ms
コンパイル使用メモリ 274,252 KB
実行使用メモリ 16,960 KB
最終ジャッジ日時 2024-11-25 01:27:38
合計ジャッジ時間 6,345 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 39 ms
16,936 KB
testcase_01 AC 37 ms
16,868 KB
testcase_02 AC 37 ms
16,844 KB
testcase_03 AC 36 ms
16,784 KB
testcase_04 AC 37 ms
16,936 KB
testcase_05 AC 36 ms
16,904 KB
testcase_06 AC 37 ms
16,868 KB
testcase_07 AC 41 ms
16,868 KB
testcase_08 AC 36 ms
16,916 KB
testcase_09 AC 37 ms
16,928 KB
testcase_10 AC 40 ms
16,948 KB
testcase_11 AC 37 ms
16,876 KB
testcase_12 AC 35 ms
16,928 KB
testcase_13 AC 36 ms
16,884 KB
testcase_14 AC 36 ms
16,924 KB
testcase_15 AC 35 ms
16,892 KB
testcase_16 AC 38 ms
16,896 KB
testcase_17 AC 37 ms
16,904 KB
testcase_18 AC 36 ms
16,856 KB
testcase_19 AC 36 ms
16,960 KB
testcase_20 AC 37 ms
16,844 KB
testcase_21 AC 37 ms
16,884 KB
testcase_22 AC 36 ms
16,868 KB
testcase_23 AC 37 ms
16,896 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
In function 'bool is_prime(ll)',
    inlined from 'void solve()' at main.cpp:198:21:
main.cpp:177:20: warning: iteration 1999998 invokes undefined behavior [-Waggressive-loop-optimizations]
  177 |   return !can_div[n];
      |           ~~~~~~~~~^
main.cpp: In function 'void solve()':
main.cpp:197:21: note: within this loop
  197 |   for (int p = 2; p <= 2000010; p++) {
      |                   ~~^~~~~~~~~~

ソースコード

diff #

#define MOD_TYPE 2

#pragma region Macros

#include <bits/stdc++.h>
using namespace std;

#include <atcoder/all>
using namespace atcoder;

#if 0
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/multiprecision/cpp_int.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif

#if 1
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif

using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;

#if MOD_TYPE == 1
constexpr ll MOD = ll(1e9 + 7);
#else
#if MOD_TYPE == 2
constexpr ll MOD = 998244353;
#else
constexpr ll MOD = 1000003;
#endif
#endif

using mint = static_modint<MOD>;
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-11;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};

#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define Yay(n) cout << ((n) ? "Yay!" : ":(") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
#define UNIQUE(v) v.erase(unique(all(v)), v.end())

struct io_init {
  io_init() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << setprecision(30) << setiosflags(ios::fixed);
  };
} io_init;
template <typename T>
inline bool chmin(T &a, T b) {
  if (a > b) {
    a = b;
    return true;
  }
  return false;
}
template <typename T>
inline bool chmax(T &a, T b) {
  if (a < b) {
    a = b;
    return true;
  }
  return false;
}
inline ll CEIL(ll a, ll b) { return (a + b - 1) / b; }
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val) {
  fill((T *)array, (T *)(array + N), val);
}
template <typename T>
vector<T> compress(vector<T> &v) {
  vector<T> val = v;
  sort(all(val)), val.erase(unique(all(val)), val.end());
  for (auto &&vi : v) vi = lower_bound(all(val), vi) - val.begin();
  return val;
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept {
  is >> p.first >> p.second;
  return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> p) noexcept {
  os << p.first << " " << p.second;
  return os;
}
ostream &operator<<(ostream &os, mint m) {
  os << m.val();
  return os;
}

random_device seed_gen;
mt19937_64 engine(seed_gen());

struct BiCoef {
  vector<mint> fact_, inv_, finv_;
  BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
    fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
    for (int i = 2; i < n; i++) {
      fact_[i] = fact_[i - 1] * i;
      inv_[i] = -inv_[MOD % i] * (MOD / i);
      finv_[i] = finv_[i - 1] * inv_[i];
    }
  }
  mint C(ll n, ll k) const noexcept {
    if (n < k || n < 0 || k < 0) return 0;
    return fact_[n] * finv_[k] * finv_[n - k];
  }
  mint P(ll n, ll k) const noexcept { return C(n, k) * fact_[k]; }
  mint H(ll n, ll k) const noexcept { return C(n + k - 1, k); }
  mint Ch1(ll n, ll k) const noexcept {
    if (n < 0 || k < 0) return 0;
    mint res = 0;
    for (int i = 0; i < n; i++)
      res += C(n, i) * mint(n - i).pow(k) * (i & 1 ? -1 : 1);
    return res;
  }
  mint fact(ll n) const noexcept {
    if (n < 0) return 0;
    return fact_[n];
  }
  mint inv(ll n) const noexcept {
    if (n < 0) return 0;
    return inv_[n];
  }
  mint finv(ll n) const noexcept {
    if (n < 0) return 0;
    return finv_[n];
  }
};

BiCoef bc(500010);

#pragma endregion

const int MAX_N = 2e6;
int can_div[MAX_N] = {};

void init_prime() {
  can_div[1] = -1;
  for (int i = 2; i < MAX_N; i++) {
    if (can_div[i] != 0) continue;
    for (int j = i + i; j < MAX_N; j += i) can_div[j] = i;
  }
}

struct init_prime_ {
  init_prime_() { init_prime(); };
} init_prime_;

inline bool is_prime(ll n) {
  if (n <= 1) return false;
  return !can_div[n];
}

void factorization(int n, unordered_map<ll, int> &res) {
  if (n <= 1) return;
  if (!can_div[n]) {
    ++res[n];
    return;
  }
  ++res[can_div[n]];
  factorization(n / can_div[n], res);
}

void solve() {
  int l, r;
  cin >> l >> r;
  int cnt = 0;

  auto in = [&](int a) { return l <= a and a <= r; };

  for (int p = 2; p <= 2000010; p++) {
    if (not is_prime(p)) continue;
    if (in(p)) cnt++;
    if (p % 2 == 1 and in((p + 1) / 2) and in((p - 1) / 2)) cnt++;
  }
  cout << cnt << "\n";
}

int main() { solve(); }
0