結果

問題 No.1661 Sum is Prime (Hard Version)
ユーザー stoqstoq
提出日時 2021-08-31 09:31:29
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 50 ms / 3,000 ms
コード長 6,028 bytes
コンパイル時間 4,661 ms
コンパイル使用メモリ 274,020 KB
実行使用メモリ 10,244 KB
最終ジャッジ日時 2024-05-03 21:29:25
合計ジャッジ時間 6,268 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 17 ms
9,088 KB
testcase_01 AC 17 ms
9,088 KB
testcase_02 AC 38 ms
10,196 KB
testcase_03 AC 17 ms
9,088 KB
testcase_04 AC 16 ms
8,960 KB
testcase_05 AC 15 ms
9,088 KB
testcase_06 AC 17 ms
9,088 KB
testcase_07 AC 17 ms
9,088 KB
testcase_08 AC 17 ms
9,088 KB
testcase_09 AC 17 ms
9,088 KB
testcase_10 AC 17 ms
9,088 KB
testcase_11 AC 17 ms
9,088 KB
testcase_12 AC 35 ms
10,072 KB
testcase_13 AC 35 ms
9,940 KB
testcase_14 AC 38 ms
10,064 KB
testcase_15 AC 43 ms
10,064 KB
testcase_16 AC 39 ms
10,196 KB
testcase_17 AC 38 ms
10,196 KB
testcase_18 AC 25 ms
9,772 KB
testcase_19 AC 32 ms
9,680 KB
testcase_20 AC 26 ms
9,772 KB
testcase_21 AC 33 ms
10,200 KB
testcase_22 AC 50 ms
10,244 KB
testcase_23 AC 48 ms
10,052 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#define MOD_TYPE 1

#pragma region Macros

#include <bits/stdc++.h>
using namespace std;

#include <atcoder/all>
using namespace atcoder;

#if 0
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/multiprecision/cpp_int.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif

#if 1
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif

using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;

#if MOD_TYPE == 1
constexpr ll MOD = ll(1e9 + 7);
#else
#if MOD_TYPE == 2
constexpr ll MOD = 998244353;
#else
constexpr ll MOD = 1000003;
#endif
#endif

using mint = static_modint<MOD>;
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-11;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};

#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define Yay(n) cout << ((n) ? "Yay!" : ":(") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
#define UNIQUE(v) v.erase(unique(all(v)), v.end())

struct io_init {
  io_init() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << setprecision(30) << setiosflags(ios::fixed);
  };
} io_init;
template <typename T>
inline bool chmin(T &a, T b) {
  if (a > b) {
    a = b;
    return true;
  }
  return false;
}
template <typename T>
inline bool chmax(T &a, T b) {
  if (a < b) {
    a = b;
    return true;
  }
  return false;
}
inline ll CEIL(ll a, ll b) { return (a + b - 1) / b; }
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val) {
  fill((T *)array, (T *)(array + N), val);
}
template <typename T>
vector<T> compress(vector<T> &v) {
  vector<T> val = v;
  sort(all(val)), val.erase(unique(all(val)), val.end());
  for (auto &&vi : v) vi = lower_bound(all(val), vi) - val.begin();
  return val;
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept {
  is >> p.first >> p.second;
  return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> p) noexcept {
  os << p.first << " " << p.second;
  return os;
}
ostream &operator<<(ostream &os, mint m) {
  os << m.val();
  return os;
}

random_device seed_gen;
mt19937_64 engine(seed_gen());

struct BiCoef {
  vector<mint> fact_, inv_, finv_;
  BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
    fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
    for (int i = 2; i < n; i++) {
      fact_[i] = fact_[i - 1] * i;
      inv_[i] = -inv_[MOD % i] * (MOD / i);
      finv_[i] = finv_[i - 1] * inv_[i];
    }
  }
  mint C(ll n, ll k) const noexcept {
    if (n < k || n < 0 || k < 0) return 0;
    return fact_[n] * finv_[k] * finv_[n - k];
  }
  mint P(ll n, ll k) const noexcept { return C(n, k) * fact_[k]; }
  mint H(ll n, ll k) const noexcept { return C(n + k - 1, k); }
  mint Ch1(ll n, ll k) const noexcept {
    if (n < 0 || k < 0) return 0;
    mint res = 0;
    for (int i = 0; i < n; i++)
      res += C(n, i) * mint(n - i).pow(k) * (i & 1 ? -1 : 1);
    return res;
  }
  mint fact(ll n) const noexcept {
    if (n < 0) return 0;
    return fact_[n];
  }
  mint inv(ll n) const noexcept {
    if (n < 0) return 0;
    return inv_[n];
  }
  mint finv(ll n) const noexcept {
    if (n < 0) return 0;
    return finv_[n];
  }
};

BiCoef bc(500010);

#pragma endregion

ll pi(const ll N) {
  if (N <= 1) return 0;
  if (N == 2) return 1;
  const int v = sqrtl(N);
  int s = (v + 1) / 2;
  vector<int> smalls(s);
  vector<int> roughs(s);
  vector<long long> larges(s);
  for (int i = 1; i < s; ++i) smalls[i] = i;
  for (int i = 0; i < s; ++i) roughs[i] = 2 * i + 1;
  for (int i = 0; i < s; ++i) larges[i] = (N / (2 * i + 1) - 1) / 2;
  vector<bool> skip(v + 1);
  const auto divide = [](ll n, ll d) -> int { return double(n) / d; };
  const auto half = [](int n) -> int { return (n - 1) >> 1; };
  int pc = 0;
  for (int p = 3; p <= v; p += 2)
    if (!skip[p]) {
      int q = p * p;
      if ((ll)(q)*q > N) break;
      skip[p] = true;
      for (int i = q; i <= v; i += 2 * p) skip[i] = true;
      int ns = 0;
      for (int k = 0; k < s; ++k) {
        int i = roughs[k];
        if (skip[i]) continue;
        ll d = (ll)(i)*p;
        larges[ns] = larges[k] -
                     (d <= v ? larges[smalls[d >> 1] - pc]
                             : smalls[half(divide(N, d))]) +
                     pc;
        roughs[ns++] = i;
      }
      s = ns;
      for (int i = half(v), j = ((v / p) - 1) | 1; j >= p; j -= 2) {
        int c = smalls[j >> 1] - pc;
        for (int e = (j * p) >> 1; i >= e; --i) smalls[i] -= c;
      }
      ++pc;
    }
  larges[0] += (ll)(s + 2 * (pc - 1)) * (s - 1) / 2;
  for (int k = 1; k < s; ++k) larges[0] -= larges[k];
  for (int l = 1; l < s; ++l) {
    int q = roughs[l];
    ll M = N / q;
    int e = smalls[half(M / q)] - pc;
    if (e < l + 1) break;
    ll t = 0;
    for (int k = l + 1; k <= e; ++k) t += smalls[half(divide(M, roughs[k]))];
    larges[0] += t - (ll)(e - l) * (pc + l - 1);
  }
  return larges[0] + 1;
}

void solve() {
  ll l, r;
  cin >> l >> r;
  ll ans = 0;
  ans += pi(r) - pi(l - 1);
  ans += max(pi(r * 2 - 1) - pi(l * 2), 0LL);
  cout << ans << "\n";
}

int main() { solve(); }
0